European Facility For Airborne Research

European Facility For Airborne Research Dec. 4, 2022, 14:08


Title The Norwegian IPY–THORPEX: Polar Lows and Arctic Fronts during the 2008 Andøya Campaign
Type Publication

From a weather forecasting perspective, the Arctic poses particular challenges for mainly two reasons: 1) The observational data are sparse and 2) the weather phenomena responsible for severe weather, such as polar lows, Arctic fronts, and orographic influences on airflow, are poorly resolved and described by the operational numerical weather prediction (NWP) models. The Norwegian International Polar Year (IPY)– The Observing System Research and Predictability Experiment (THORPEX) project (2007–10) sought to significantly improve weather forecasts of these phenomena through a combined modeling and observational effort. The crux of the observational effort was a 3-week international field campaign out of northern Norway in early 2008, combining airborne and surface-based observations. The main platform of the field campaign was the Deutsches Zentrum für Luft- und Raumfahrt (DLR) research aircraft Falcon, equipped with lidar systems for profiling of aerosols, humidity, and wind, in addition to in situ measurements and dropsondes. A total of 12 missions were flown, yielding detailed observations of polar lows, Arctic fronts, and orographic low-level jets near Spitsbergen, the coast of northern Norway, and the east coast of Greenland. The lidar systems enabled exceptionally detailed measurements of orographic jets caused by the orography of Spitsbergen. Two major polar low developments over the Norwegian Sea were captured during the campaign. In the first polar low case, three f lights were carried out, providing a first-ever probing of the full life cycle of a polar low. Targeting observations by the aircraft in sensitive areas led to improvements in predicted track and intensity of the polar low. Here highlights from the field campaign, as well as from ongoing follow-up investigations, are presented. Highlights from the development of a new limitedarea model ensemble prediction system for the Arctic, as well as an exploitation of new satellite data [Infrared Atmospheric Sounding Interferometer (IASI) data], are also included.

Available from
HOV Oystein
REUDER Joachim
T. Aspelien, Ø. Godøy, T. Iversen, E. Kolstad, T. E. Nordeng, H. McInnes, R. Randriamampianina
Journal Bulletin of the American Meteorological Society
Volume 92
Pages 1443-1466
Year 2011
Times cited None
Institute country Norway
Type of science
  • Aerosol chemistry and physics
  • Atmospheric dynamics (includes thermodynamics)
  • Gas chemistry
Field of science
  • Polar regions
  • Troposphere
File details
Added Aug. 18, 2017, 09:55
Last update Aug. 18, 2017, 10:20
Visibility Public - Available for any user
Links with specific subjects

Go to the document list

Back to top
Copyright © 2022 EUFAR All rights reserved.