European Facility For Airborne Research

European Facility For Airborne Research Jan. 27, 2020, 03:21


MORE success for EUFAR Transnational Access

The MORE transnational access airborne campaign was aimed at investigating the vertical distribution of aerosol and ozone in a rural coastal area with complex orography. The campaign was funded and supported by the EUFAR FP7 project (under EC grant agreement 227159), and took place in conjunction with the validation campaign of the MINNI project (National Integrated Assessment Modeling System for Policy Making, Italy) in Southern Italy in May/June 2010.

The results of the campaign have been recently published in an article entitled "On the complexity of the boundary layer structure and aerosol vertical distribution in the coastal Mediterranean regions: a case study" in the Tellus Series B Journal on Chemical and Physical Meteorology. Click here to access the article.


The planetary boundary layer structure in the coastal areas, and particularly in complex orography regions such as the Mediterranean, is extremely intricate. In this study, we show the evolution of the planetary boundary layer based on in situ airborne measurements and ground-based remote sensing observations carried out during the MORE (Marine Ozone and Radiation Experiment) campaign in June 2010. The campaign was held in a rural coastal Mediterranean region in Southern Italy. The study focuses on the observations made on 17 June. Vertical profiles of meteorological parameters and aerosol size distribution were measured during two flights: in the morning and in the afternoon. Airborne observations were combined with ground-based LIDAR, SODAR, microwave and visible radiometer measurements, allowing a detailed description of the atmospheric vertical structure. The analysis was complemented with data from a regional atmospheric model run with horizontal resolutions of 12, 4 and 1 km, respectively; back-trajectories were calculated at these spatial resolutions. The observations show the simultaneous occurrence of dust transport, descent of mid-tropospheric air and sea breeze circulation on 17 June. Local pollution effects on the aerosol distribution, and a possible event of new particles formation were also observed. A large variability in the thermodynamical structure and aerosol distribution in the flight region, extending by approximately 30km along the coast, was found. Within this complex, environment-relevant differences in the back-trajectories calculated at different spatial resolutions are found, suggesting that the description of several dynamical processes, and in particular the sea breeze circulation, requires high-resolution meteorological analyses. The study also shows that the integration of different observational techniques is needed to describe these complex conditions; in particular, the availability of flights and their timing with respect to the occurring phenomena are crucial.

Pace, G., Junkermann, W., Vitali, L., di Sarra, A., Meloni, D., Cacciani, M., Cremona, G., Iannarelli, A., & Zanini, G. (2015). On the complexity of the boundary layer structure and aerosol vertical distribution in the coastal Mediterranean regions: a case study. Tellus B, 67. doi:

Originally published on Oct. 21, 2015
Last update on Sept. 13, 2016

Next: Call for Proposals on Polar Science Applications, closing date 15 July 2015

Previous: EUFAR Online Survey to establish user needs

Entry gallery

Map of MORE experiment region. (C) EUFAR.

Map of MORE experiment region. (C) EUFAR.

Map of the experiment region. The red square indicates the domain of the 1 km X 1 km 3-D meteorological field used to calculate the high-resolution back-trajectories. Red triangles and black spots show, respectively, the chimney stacks and the urban areas; the main roads are indicated by black lines. The white circle indicates the ENEA Research Centre of Trisaia. (b) The paths of the 17 June morning and afternoon flights are shown on a detailed map of the study area. The red circle shows the location of the air quality station at Ferrandina. The red oval indicates the inland area sampled in the afternoon flight.

Back to top

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 312609

Copyright © 2020 EUFAR All rights reserved.