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Abstract: A seasonally robust algorithm for the retrieval of Suspended Particulate Matter 

(SPM) in the Scheldt River from hyperspectral images is presented. This algorithm can be 

applied without the need to simultaneously acquire samples (from vessels and pontoons). 

Especially in dynamic environments such as estuaries, this leads to a large reduction of 

costs, both in equipment and personnel. The algorithm was established empirically using in 

situ data of the water-leaving reflectance obtained over the tidal cycle during different 

seasons and different years. Different bands and band combinations were tested. Strong 

correlations were obtained for exponential relationships between band ratios and SPM 

concentration. The best performing relationships are validated using airborne hyperspectral 

data acquired in June 2005 and October 2007 at different moments in the tidal cycle. A 

band ratio algorithm (710 nm/596 nm) was successfully applied to a hyperspectral AHS 

image of the Scheldt River to obtain an SPM concentration map. 
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1. Introduction  

Estuarine areas and rivers are very complex and dynamic systems. Areas around these rivers and 

estuaries are often populated and can serve as important shipping channels, which implies erosion and 
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pollution by toxins. The latter is transported by Suspended Particulate Matter (SPM), which is highly 

concentrated in estuaries. Knowing SPM loads and its spatial distribution is therefore essential in 

maintaining and controlling these environments. 

SPM is one of the three main optically active constituents in natural waters. The other optically 

active constituents are Chlorophyll (CHL) and Colored Dissolved Organic Matter (CDOM). Since 

these constituents affect the color of the water, it is possible to detect their presence in water using 

remote sensing and quantify their respective concentrations [1]. Pure water itself has a blue color, but, 

with an increase of suspended sediments, the water turns, in most cases, brown due to the stronger 

absorption in the blue and the strong backscattering in the visible and near infrared part of the 

electromagnetic spectrum [2]. CHL will add a green color to the water by absorbing blue and red light 

and CDOM contributes a yellow-brownish color because of the high absorption in the blue. These 

findings always relate to surface concentrations since the water penetration depth is limited (~1 meter 

or less in highly turbid water for red and near-infrared wavelength region).  

Estuarine and coastal waters are, however, complex in their composition and optical properties. 

Therefore, relatively simple global algorithms developed for open oceans are not applicable to these 

waters. Several authors pointed out the strong regional variations in optical properties for these coastal 

and estuarine areas and have encouraged the development of algorithms on a regional scale. In [3] 

and [4], absorption and scattering coefficients were measured for different coastal waters (North sea 

and English Channel, Lions Gulf, Northern Adriatic sea, Baltic). The mass specific scattering 

coefficient of particles (close to 0.5 m
2
/g at 555 nm) and the spectral shape showed considerable 

variability within each region and on a region-by-region basis. According to [4], these differences 

originate from variability in the size distribution and the particle composition. The exponential slope 

of CDOM varied only slightly around 0.0176 nm
−1

. The relationship between phytoplankton 

absorption and TCHL (the sum of CHL a and phaeopigments) was similar to that previously observed 

by [5], but revealed significant variability among the regions. Finally, most absorption spectra of  

Non-Algal Particles (NAP) could be described by an exponential function with a slope of 0.0123 with 

weak variations. Likewise, Darecki et al. [6] showed that the inherent and apparent optical properties 

of the Baltic Sea waters are subject to significant seasonal variations, due to the seasonal cycle of 

hydrological regimes and biological cycles. For the Eastern English Channel, Vantrepotte et al. [7] 

found a pronounced seasonal variation in bio-optical properties with relevant differences between 

winter and spring-summer periods. For estuarine waters [8], absorption and backscattering coefficients 

were in the range observed in [3] and [4], but with significant variations within one estuary and 

between different estuaries. 

Despite their complexity, there is a growing interest in the study of estuarine and coastal waters and 

the development of algorithms to derive total suspended matter from remotely sensed data. Algorithms 

are empirically, semi-empirically derived, or based on an analytical method. In the analytical 

approach, the water constituent concentrations are physically related to the measured reflectance 

spectra using sophisticated radiative transfer models (e.g., Hydrolight) or (semi-) analytical bio-optical 

models. To determine the water quality parameters (e.g., SPM), these models are inverted through 

neural networks, matrix inversion [9] or curve fitting [10]. This approach requires detailed information 

about the inherent optical properties (IOP) like the absorption and the backscattering coefficients. As 

already pointed out, there is a large variety in these optical properties for different coastal and 
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estuarine waters. Therefore care must be taken when applying these analytical models and to derive 

water quality estimates. 

The empirical approach is based on a statistical calibration relationship between spectral data and 

SPM. The derived relationships are valid only for data having statistical properties identical to those of 

the training data. Therefore these algorithms are sensitive to changes in the composition of water 

constituents and they are often developed for one specific region and one specific moment in time. 

Only a few researchers tested the seasonal portability of their empirical algorithms. Matthews et al. [11] 

performed a limited test for a spring and summer dataset for both the Bristol Channel and the north 

Norfolk coast. For the north Norfolk coast, SPM concentrations ranged between 2–24 mg/L in May 

and 1.5–22 mg/L in August. CHL concentrations were recorded between 4.9 g/L and 16.08 g/l in 

May and between 0.94 g/L and 14.5 g/L in August. For the Bristol Channel, SPM concentrations 

ranged between 1.5–24 mg/L in June and 1.5–90 mg/L in September. CHL concentrations ranged 

between 1.87 and 5.36 g/L in June and between 0.58 and 2.37 g/L in September. The authors did 

not cover the full range of suspended solids concentrations (the authors mention that these would be 

considerably higher in winter) but they achieved accurate estimations of SPM when applying an 

algorithm to data collected from the same site later in the year. Doxoran et al. [12] proposed an invariant 

band ratio (850 nm/550 nm) algorithm to retrieve the estuarine sediment dominated waters of the 

Gironde and the Loire [13]. Hence there are examples of seasonal portability of these empirical 

algorithms, but they are scarce. Geographical portability on the other hand is not possible due to 

geologic diversity of the upland basin, the dynamics of ocean currents, and the variety of residence 

times that will result in highly varying scattering and absorption properties of SPM [14]. 

For the Scheldt River in Belgium, an empirical relationship was already found between SPM 

concentration and a difference of two near infrared bands [15]. This relationship was developed for 

June 2005 using both in situ and hyperspectral airborne data. The development of such an algorithm 

enforces the need for adequate in situ samples for calibration. Gathering such calibration data is, 

however, a real challenge in dynamic environments such as estuaries and rivers. In tidal estuarine 

waters, such as the Scheldt, concentrations vary rapidly in space and time. Water samples collected for 

calibration and/or validation purposes of remote sensing data (e.g., airborne or spaceborne) are 

therefore only representative if they are taken within a close time span of the overpass of the satellite 

or airplane (with a maximum delay of 5 to 10 min for the Scheldt River). This implies a serious 

restriction to the acquisition of a sufficient number of training samples to set up an empirical 

algorithm. To gather an adequate set of field samples in these circumstances, there is a need for 

multiple vessels, equipment and personnel making such a field campaign very expensive and 

operationally complex. A more robust SPM algorithm for the Scheldt would therefore be of great 

interest to the users’ community since extensive field campaigns are no longer required and one could 

save upon cost and time.  

The objective of this study is to find a seasonally robust SPM algorithm for the Scheldt River near 

Antwerp in Belgium. The algorithm should be broadly applicable to new datasets without the need for 

simultaneously gathered in situ samples. In situ measured datasets acquired during different seasons 

and tidal phases are used to build the algorithm. Validation is performed with hyperspectral airborne 

datasets acquired in June 2005 and October 2007. Since these datasets were acquired under different 
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atmospheric circumstances, special attention is directed to atmospheric and air/water 

interface corrections.  

2. Site Characterization 

The Scheldt River rises in the North of France and flows through Belgium and the Netherlands to 

finally reach the North Sea. The river is rain-fed and the average discharge varies considerable 

between summer-autumn (60 m
3
/s) and winter-spring (180 m

3
/s) [16]. Our study area is part of the 

brackish lower sea Scheldt, situated between the city of Antwerp (±79 km from the mouth) and the 

border of Belgium and the Netherlands (±60 km from the mouth) (Figure 1).  

Figure 1. The Scheldt study site. 

 

This zone corresponds to the zone of high turbidity [16]. Chen et al. [17] reported average SPM 

concentrations of 82 ± 65 mg/L in the uppermost 10% of the water column. However, it has to be 

noted that these concentrations vary with the tidal cycle and the seasons [17]. The tide in the Scheldt is 

semi-diurnal and its influence extends up to Gent, 82 km upstream of Sint Anna (Figure 1). An 

example of this tidal influence on the surface SPM concentrations is shown in Figure 2. These data 

were collected with an OBS turbidity meter mounted in January 2008, 30 cm below the water surface, 

at pontoon Sint Anna (88 km from the mouth; see the inset in Figure 1). The measurements started 

around high water (tide) and ended almost an hour after low water (tide). From these measurements, 

significant variations can be observed during the tidal cycle. SPM concentrations vary between 30 and 
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200 mg/L. Small variations with high frequencies can be due to air bubbles, turbulent current 

variations or local erosion.  

The mud found in the Scheldt Estuary is from marine and terrestrial origin. The terrestrial sources 

are waste water, surface erosion of cohesive soils, erosion of the exposed clay layers at the bottom of 

the estuary, and precipitation [18].  

Information on the surface CHL and CDOM concentration for the Scheldt study site is rare. In 

1996, Muylaert et al. [19] reported two phytoplankton blooms for the estuary: one in spring (occurring 

in the upper estuary >160 km with phytoplankton biomass <100 g/L), and a second, more intense, in 

the summer (in the 100–160 km zone). For our study area in particular, concentrations were generally 

below 10 g/l with a first slight increase in May–June (concentrations below 20 g/L) and with a more 

pronounced increase in August-September (concentrations above 30 g/L close to Antwerp). For the 

CDOM concentration, there were some measurements made by [20] in February 2005 and July 2006 in 

the Scheldt estuary between the mouth and Antwerp. The authors showed variations in the absorption 

coefficient of CDOM (aCDOM) at 375 nm between 1.8 and 4.3 m
−1

.  

Figure 2. OBS turbidity measurements for pontoon Sint Anna in January 2008. 

 

3. Data Collection 

To achieve the objectives, a large dataset was set up, consisting of two hyperspectral airborne 

datasets from the Scheldt River (June 2005 and October 2007), in situ data sampled coincident with 

the airborne campaigns and extra in situ measurements in 2007 and 2009.  

3.1. Airborne Datasets  

Two hyperspectral airborne datasets were acquired in June 2005 (spring) and in October 2007 

(autumn) at different moments in the tidal cycle (Table 1). In general, the weather circumstances were 
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good, only the last flightlines in 2005 contain cirrus and a few cumulus clouds. In both years the 

Advanced Hyperspectral sensor (AHS) (SenSytech.Inc) was operated by INTA (Instituto Nacional de 

Tecnica Aerospacial). Fifteen flight lines were acquired in June 2005 at 4-m spatial resolution and 

eight flight lines in October 2007 at 7-m spatial resolution. All flight lines were flown in line with or 

opposite to the sun to avoid sun glint.  

Table 1. Time and date of airborne acquisitions. 

Date 
Time of High Water 

UTC 

Time of Low Water 

UTC 

Acquisition Times 

UTC 

15/06/2005 
8:25 

20:55 

02:35 

14:54 

7:58, 8:11, 8:21, 8:31, 8:44, 9:01, 9:15, 9:26, 9:45,  

10:03, 10:17, 10:36, 10:46, 10:55, 11:13 

6/10/2007 
11:03 

22:42 

04:46 

17:59 
8:07, 8:18, 8:29, 8:39, 9:02, 9:12, 9:23, 9:34 

The spectral bands of the AHS sensor are shown in Table 2. Only the first 20 bands (from ±456 nm 

to 1,002 nm) were used in this research. At longer wavelengths, the pure water absorption becomes a 

significant factor resulting in a low signal to noise ratio which restricts accurate information extraction 

from this spectral region.  

Table 2. Central wavelength and Full Width at Half Maximum (FWHM) of the AHS sensor. 

Band NR. 

Central  

Wavelength FWHM 

1 0.456 0.030 

2 0.482 0.032 

3 0.510 0.033 

4 0.539 0.032 

5 0.568 0.031 

6 0.596 0.032 

7 0.624 0.032 

8 0.653 0.032 

9 0.681 0.032 

10 0.710 0.033 

11 0.738 0.031 

12 0.767 0.032 

13 0.795 0.032 

14 0.825 0.032 

15 0.855 0.032 

16 0.884 0.032 

17 0.913 0.033 

18 0.942 0.033 

19 0.973 0.034 
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3.2. In situ Data Collection 

During the airborne campaigns in 2005 and 2007, the water-leaving reflectance was measured and 

surface water samples were gathered simultaneously with the overpass of the aircraft. The water was 

sampled using buckets in the upper 50 cm of the water column. The water samples were stored in dark 

bottles and were kept cool immediately after sampling. The sampling was done from vessels and from 

the fixed pontoons at Sint Anna and Lillo (Figure 3). Several rules applied to the sampling from the 

vessels. First of all, the vessels need to lie idle during sampling to avoid turbulence effects. Secondly, 

the sampling positions need to be outside the main course of the ships; they have to include a large part 

of the study area and have a large variation in SPM concentration. Finally, sampling should be 

performed close to when the plane passes over. This last requirement is essential since the river is very 

dynamic and a match-up restriction of 5 min is applicable. The locations are indicated in Figure 3. In 

total, 41 water match-up samples were gathered in 2005 and 17 water samples in 2007, which could be 

used to set up a robust SPM algorithm.  

Figure 3. Sampling locations. 
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The water-leaving reflectance was measured on the vessels with an ASD (Analytical Spectral 

Devices, Inc.) FieldSpec FR spectrometer. The ASD spectrometer measures the reflected light in the 

Visible/Near Infrared (VNIR, 350–1,050 nm) and the Short-Wave Infrared (SWIR, 900–2,500 nm) 

portion of the spectrum. The downwelling irradiance above the surface (Ed(a)) was measured using an 

almost 100% reflecting Spectralon reference panel (Analytical Spectral Devices, Inc.). Then, the 

water-leaving radiance (Lw(a)) was measured by pointing the sensor at the water surface at 40° from 

nadir, maintaining an azimuth of 135° from the solar plane to minimize sun glint. Downwelling sky 

radiance (Lsky(a)) was measured at a zenith angle of 40° to account for the skylight reflection. 

In addition to the field data obtained coincident with the airborne campaigns, extra samples were 

collected in June 2009 from vessels and monthly measurements were performed in 2007 at two 

pontoons at the Scheldt River near Antwerp (Figure 3: pontoon Lillo and pontoon Sint Anna). These 

included water samples and measurements of the water-leaving reflectance and were done at the same 

time relative to High Water (HW), i.e., at pontoon Sint Anna (SA) 2 h after HW and at pontoon  

Lillo (LI) 3 h after HW. 

3.3 Lab Analysis of in situ Measurements 

From the water samples, SPM concentration was determined by filtering the water on Whatman 

GF/F glass fiber filters according to the European reference method EN 872 [21]. Following this 

method, the weight of the filters without particles is first measured and the filters are moistened with 

MilliQ-water. After shaking, 250 mL of the water samples are filtered. Then the filter is rinsed 3 times 

with 150 mL MilliQ-water to collect the residuals. The filter is dried in the oven for minimum 2 hours 

at 105 °C and is subsequently cooled in a desiccator for a minimum time of half an hour. Finally the 

filter is weighted and the concentration is derived. 

SPM concentrations collected during the airborne campaigns in 2005 and 2007 ranged between 21 

and 136.5 mg/L and between 17 and 115 mg/L respectively. In 2009 an average SPM concentration of 

46 mg/L was found for the north part and 77.1 mg/L for the south part of the study area. In general, 

higher concentrations were observed for measurements closer to the shore and, in 2005, for 

measurements a few hours after high water.  

For the extra monthly in situ sampling from the pontoons in 2007, the SPM concentration is shown 

in Figure 4. The figure reveals strong seasonal variations with high differences between the two 

stations. For Lillo the highest SPM concentrations were recorded in May and the lowest in January. 

For Sint Anna, there is a local maximum in May and there is a remarkable strong increase in the 

autumn and beginning of the winter. These observations are difficult to interpret because of the lack of 

data. Moreover it is difficult to differentiate between local erosion/sedimentation and mud transport. In 

general, high concentrations appear more often in winter and low concentrations in summer [18] due to 

variations in the freshwater discharge, temperature and land erosion. The higher values in May 

observed for both stations, could be due to a sudden increase in precipitation. April 2007 was an 

extraordinary month with no precipitation, whereas May was characterized by abnormal high 

precipitation [22]. In autumn the precipitation was less than in the summer months, however the plant 

cover degrades nearing winter leading to higher terrestrial erosion. The lower concentrations in 



Remote Sens. 2010, 2            

   

2048 

autumn and beginning of the winter for Lillo may indicate that Lillo is situated seaward of the turbidity 

maximum whereas Sint Anna could be located within this turbidity maximum. 

Figure 4. SPM averages for the extra monthly in situ measurements (2007). 

 

The water-leaving reflectance (Rw) was calculated using the following equation [23]: 

Rw = (Lw(a) − asLsky(a))/Ed(a)       (1) 

where as is the air-sea interface reflection coefficient and is calculated as a function of the wind 

speed [23]. Since the spectral resolution of the ASD (3 nm at around 700 nm) and AHS sensor are 

different, the in situ measurements were resampled to match the response of the AHS sensor. The 

resampling was performed using a Gaussian model for each band by providing wavelengths and 

FWHM information of the AHS sensor 

In Figure 5, some of the measured water-leaving reflectance spectra are shown with their 

corresponding SPM concentration. For low SPM concentrations (<50 mg/L) a maximum is observed 

around band 5 (568 nm). The signal in the NIR is weak. At higher SPM concentrations this peak is no 

longer present and the signal between 568 nm and 681 nm is high and rather flat. For all spectra, a 

second but local maximum is observed in band 13 (795 nm). The reflectance spectra increases in the 

red and NIR with increasing SPM concentration. Largest increases are observed between 681 nm and 

825 nm. Around 567 nm this steady increase is not apparent and, also at longer wavelengths (larger 

than 942 nm), the spectrum is less sensitive to increasing SPM concentrations. 

The dataset collected covers much of the seasonal and tidal variations in the Scheldt River. Tidal 

influences are accounted for by the June 2005, October 2007 and June 2009 datasets. Seasonal 

variations are accounted for in the 2007 monthly dataset. The variations in SPM concentrations were 

shown and discussed in this section. Salinity or the composition of the sediment was not recorded. 

However, a big part of the variation is linked with variations in freshwater discharge and terrestrial 

erosion and, hence, with the precipitation. During periods of high river runoff, the salinity is low, 

whereas, during dry periods, high salinity values are observed [18]. The tidal cycle (high salinity 

during high water, low salinity during low water) contributes to a lesser degree [16]. Since the 2007 
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dataset covered a large range of precipitation values, it is assumed that it also covers a wide range in 

salinity values and it covers the existing changes in sediment composition.  

Figure 5. In situ measured water-leaving reflectance spectra. 

 

4. Pre-Processing of the Airborne Images 

Pre-processing of the airborne datasets was done in VITO’s Central Data Processing Centre 

(CDPC) for airborne data. The processing steps include archiving, dGPS correction, direct 

georeferencing, atmospheric, adjacency and air/water interface correction [24]. The atmospheric and 

air-interface correction is based on the algorithms given in de Haan and Kokke [25], which also takes 

into account the effects at the air/water interface:  

The radiance received by the sensor 
rs

ettL arg  consists of atmospheric path radiance pathatmL  , 

background path radiance pathbackgrL  and ground reflected radiation ettL arg  or  

targetLpathbackgrLpathatmLrs
targetL         (5) 

with  

          

   
π

EsθsφvφsθvθatmR
pathatmL 0cos,, 

  

   

π

adEappRvθτ
dir

t

targetL
,

  

   

π

adEbackgrappRvθτ
dif

t

pathbackgrL
,,

  

where 0E  is the extraterrestrial solar irradiance,  sφvφsθvθatmR  ,,  is a coefficient describing the 

reflection of light by the atmosphere, sθ  and sφ are respectively the sun zenith and azimuth angle, 
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vθ  and vφ  are respectively the viewing zenith and azimuth angle,  aEd  is the downwelling irradiance 

above the surface, tdif and tdir are respectively the diffuse and direct ground-to-sensor transmittance, 

Rapp is the target apparent reflectance defined as : 

 
   adE

askyLvθrπ

adE

awLπ
appR

)()(


        (6) 

With )(awL  the water-leaving radiance, )(askyL  the downwelling sky radiance. All these terms are 

measured just above the surface. )( vθr  is the Fresnel reflectance. backgrappR ,  is the background 

apparent reflectance, defined in a similar way as Rapp. 

The water leaving reflectance wR can be retrieved from appR  as follows: 

 adE

askyLvθrπ

appRwR
)()(



       (7) 

The basis of the MODTRAN4 interrogation technique [26, 25] is that apparent surface reflectance 

( appR ) and the water leaving reflectance wR  can be written as a function of rs
targetL  , rs

backgr
L  and 

several atmospheric parameters (c1..5; d1): 

rs
backgr

Lcc

rs
backgr

Lcrs
targetLcc

appR

54

321







     (8)  

and  

1dappRwR 
       (9)  

with  

pathatmLc 
1  

),(/),(1
2 vθτ

dir
tvθτdif

tc 
 

21),(/),(
3

cvθτ
dir

tvθτdif
tc 

 

*

*

0

5

4
/),()cos()(

sc

LstEtc pathatmvss



 
 

 adEaskyLvθrπd )()(
1


 

s
*
 the spherical albedo of the atmosphere. 

The c1..5 and 1d parameters can be derived by running MODTRAN4. The visibility and water vapor 

content were estimated from the images according to the methods described in [27] and [28]. The 

aerosol type was derived from the spectral dependency of the aerosol optical depths obtained from 

ground-based sunphotometer readings as the airplane passed over (Figure 2) [29].  

An adjacency correction was performed based on the NIR similarity spectrum [30]. This correction 

algorithm estimates the contribution of the background radiance based on the correspondence with the 

NIR similarity spectrum. The main advantage of the method is that no assumptions have to be made on 

the NIR albedo, such that the correction can be applied over more turbid waters, i.e. until the similarity 

spectrum is valid (0.3 to 200 mg/L according to [31,32]).  

Figure 6 shows a water-leaving reflectance spectrum before and after adjacency correction and a 

coincident in situ measurement. Without adjacency correction, the water-leaving reflectance is high in 
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the NIR due to the presence of vegetation near the shores. After the correction, the NIR reflectance 

decreased significantly and matched the in situ spectrum better. Small deviations between the in situ 

and airborne spectrum can be due to match-up problems during sampling. The water vapor absorption 

band is still apparent in the airborne spectra. However during operational processing this absorption 

feature will no longer be visible as the water vapor is automatically estimated from the image 

according to [28]. 

Figure 6. Water-leaving reflectance spectra from an airborne image before and after 

adjacency correction compared with an in situ above water measurement of the 

water-leaving reflectance. 

 

5. Algorithm Development 

A robust SPM algorithm was selected by comparing the performance of linear and exponential 

regression models between the water-leaving reflectance calculated from in situ  

above-water-measurements and the corresponding SPM concentrations of the in situ datasets of 2005, 

2007 and 2009. Not only individual bands, but also band combinations (sum, difference, ratios, first 

derivative) were used as input in the models. The determination coefficient (R
2
) and the Root Mean 

Square Error (RMSE) of all tested regression models were calculated. A validation was done with the 

airborne data of June 2005 and October 2007.  

6. Results and Discussion 

Figure 7 shows the results for single band relationships and Table 3 shows the best performing 

regression models for multi-band relationships with their corresponding correlation coefficient, 

determination coefficient, RMSE, slope and intercept. From Figure 7, it is clear that the Red and NIR 

wavelength range from 710 nm to 913 nm is highly sensitive to increases in SPM concentration. From 
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visual inspection of the water-leaving reflectance spectra (Figure 5), similar conclusions were drawn. 

The highest single-band correlation (determination coefficient of 0.67) is obtained for the 825 nm 

band. The RMSE is 30.45 mg/L. Furthermore, bands 710 and 738 are interesting because of their low 

RMSE (15.08 mg/L and 15.51 mg/L respectively). For the multi-band relationships, only band ratios 

and band differences are shown with exponential relationships because these outperformed all the 

others. Most of the algorithms in Table 3 combine a high correlation band with a low correlation band, 

resulting in even higher correlations. By combining these bands errors in the correction for surface 

reflection effects (sun and sky glint), the water-leaving reflectance spectra might by cancelled out. The 

problem in the correction of these surface reflection effects, lies in the as factor which is the air-sea 

interface reflection coefficient and is calculated as a function of the wind speed. This factor is an 

approximation and probably contains some errors which can be minimized by considering band ratios 

or band differences.  

The highest determination coefficient (0.81) and lowest RMSE (15.07 mg/L) was obtained for a 

model using a visible to red band ratio (Rw539/Rw795).  

Figure 7. Determination coefficient and RMSE for single band relationships. 

 

All relationships in Table 3 were validated using water-leaving reflectance spectra from the 

airborne AHS datasets. In general, a higher RMSE is observed compared to the results of the in situ 

measurements. This can partly be attributed to inaccuracies in the atmospheric correction. Only the 

best performing band ratios and band difference are presented in Table 4. The band ratios perform 

much better than the band differences. In particular two band ratio algorithms have very good 

validation results: 

Ln(SPM) =  3.36*(R(0−, 710) /R(0−, 596)) + 1.34  (10)  

Ln(SPM) = −0.70*(R(0−, 539) /R(0−, 795)) + 5.5  (11)  
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Table 3. Results of the regression analysis for multi-band relationships. 

Algorithm Slope Intercept 
Correlation 

Coefficient 

Determination  

Coefficient 

RMSE  

(mg/L) 

596/653 −8,21 12,60 −0,78 0,60 20,95 

596/681 −5,11 9,66 −0,74 0,55 21,86 

456–710 −39,26 3,30 −0,74 0,54 23,49 

710/596 3,36 1,34 0,82 0,67 19,58 

710/539 2,37 1,86 0,78 0,61 21,81 

539/795 −0,70 5,50 −0,90 0,81 15,07 

510/795 −0,85 5,54 −0,90 0,80 15,09 

1002–767 −38,39 3,07 −0,75 0,56 26,31 

1002–795 −36,00 3,01 −0,77 0,59 25,38 

1002–825 −43,46 2,98 −0,83 0,68 21,60 

973–767 −48,20 2,90 −0,84 0,71 19,88 

973–795 −43,72 2,86 −0,85 0,72 19,35 

973–825 −46,06 2,98 −0,85 0,72 20,32 

973–855 −62,95 3,10 −0,83 0,69 21,15 

942–767 −51,46 2,91 −0,82 0,67 22,72 

942–795 −46,46 2,86 −0,83 0,68 21,82 

942–825 −53,75 2,90 −0,86 0,75 18,96 

942–855 -68,90 3,13 −0,80 0,63 23,67 

942–884 −85,90 3,22 −0,77 0,59 25,73 

913–825 −75,92 2,85 −0,85 0,71 20,48 

913–855 −138,82 3,00 −0,81 0,65 22,37 

913–884 −235,70 3,14 −0,75 0,56 26,26 

913–973 106,14 3,24 0,82 0,66 23,33 

539–681 −67,95 3,91 −0,75 0,57 22,14 

Table 4. Results of validation with the airborne data. 

Band Combination Algorithm RMSE (mg/L) RMSE (%) 

710/596 16,10 29,02 

539/795 18,36 35,29 

1002–767 34,85 54,96 

1002–795 33,34 50,99 

1002–825 32,88 50,35 

973–825 34,75 54,66 

These band ratio algorithms are not in line with previous findings for the Scheldt River. In [15] a 

band difference algorithm of two NIR bands was obtained after a similar regression analysis. The 

regression analysis was based solely on the airborne dataset with 15 flight lines all acquired on 

15 June 2005 (same dataset as used in this study). The RMSE obtained for this band difference was 

15 mg/L. However, the airborne dataset used was not corrected for adjacency effects. The band 

difference worked very well in this particular case as it seemed to partly correct these adjacency 

effects. Here, using an extended seasonal dataset which is corrected for adjacency effects, similar band 
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ratio algorithms result in a RMSE of around 33 mg/L. These results were expected due to the large 

tidal, seasonal and yearly variations in the dataset.  

In contrast, band ratio algorithms (10) and (11) provide surprisingly good results. Looking beyond 

the Scheldt River, comparable band ratio algorithms were found for the Bristol channel (618 nm/754 nm) 

and the Norfolk coast (575 nm/747 nm) by Matthews et al. [11] using a CASI hyperspectral sensor. 

Doxoran et al. [12,13] established a robust relationship between SPM and a near-infrared to red band 

ratio (850 nm/550 nm) for the Gironde and Loire estuary based on in situ spectral measurements. Both 

authors point to the seasonal robustness of their algorithms, but both their algorithms needed 

recalibration when applying them to different estuarine environments [13]. Hence the frequent use of 

these band ratios and the SPM concentrations indicates the robustness of these algorithms however 

they seem to be site specific. The characteristics of the suspended sediment (particle size and type) 

strongly vary between the different sites (much more than the seasonal variability). Especially for 

estuaries these variations can be large as they depend on the upland basins, river discharge, tidal cycles 

and flocculation processes. These characteristics influence the scattering behavior and, consequently, 

these empirical algorithms are no longer valid when applied to these other environments. 

The two band ratio algorithms (10) and (11) retrieved after the regression analysis and the 

validation with the airborne data are presented graphically in Figures 8 and 9. All in situ datasets used 

to build the algorithm are shown in different colors. The trend line in black shows the relationships as 

obtained after the regression analysis. The airborne dataset is superimposed on this graph. These 

figures show the robustness of the algorithms as all datasets are quite well distributed among the trend 

line. All datasets have a minor offset from the trend line and in particular two datasets have a slightly 

different slope: the monthly dataset for SPM algorithm 11 and the June 2009 dataset for SPM 

algorithm 10. It is therefore recognized that an algorithm specifically calibrated for each dataset will 

have a better correlation and better SPM estimates but, from the point of view of a robust algorithm, 

these two algorithms perform surprisingly well. Since algorithm (10) performs better for the airborne 

data, this algorithm is selected as seasonally robust algorithm for the Scheldt. 

Finally algorithm (10) which provided the best validation results was applied to the airborne dataset 

to derive an SPM concentration map. Since the SPM concentration values were log transformed, an 

additional correction for statistical bias is needed when performing the back-transformation [33]: 

SPM = exp (3.36*(R(0−, 710) /R(0−, 596)) + 1.34 + s
2
/2)     (12) 

with s
2
 as the variance. 

The final SPM concentration map is shown in Figure 10. The concentrations are expressed in mg/L 

and an exponential color bar was chosen to best represent the data. The concentrations were in the 

expected range. No adjacency effects are observed. Increasing concentrations on the sides are 

interpreted as natural increases of the surface SPM concentration and are not linked to adjacency. 
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Figure 8. SPM Algorithm 10. 

 

Figure 9. SPM Algorithm 11. 
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Figure 10. (a) Hyperspectral image of the Scheldt river, 6 June 2009, 10:03 UTC,  

(b) SPM concentration map of the Scheldt River. 

 

 

(a) 

 

(b) 

 

 

7. Conclusion 

An extensive dataset was gathered in this study to find a seasonally robust algorithm for SPM 

estimation in the Scheldt River near Antwerp. The in situ measurements were used to set up the 

algorithm and two airborne hyperspectral datasets were used for validation. The selected seasonally 

robust algorithm uses a ratio of a band at 710 nm and a band at 596 nm. This ratio is exponentially 

related to the SPM concentration. The use of similar band ratios found in the literature indicates the 

robustness of these algorithms. The advantage of this robust algorithm is mainly its wide applicability 

without any in situ sampling and the associated reduction in cost. On the contrary, algorithms 

specifically calibrated for one moment and one area are more expensive but are proven to provide 

higher accuracies [15]. With an eye on temporal follow up of the SPM concentrations in the Scheldt 

estuary, the seasonal robustness may be more important than the absolute accuracy of the algorithm, 

and the band ratio algorithm found in this study may be ideal. Also when only a few (or no) in situ 

measurements are available, this algorithm could provide an idea of the concentrations and patterns in 

the Scheldt River. If highly accurate SPM estimates are needed for one specific moment in time, it 

could still be worthwhile to recalibrate the algorithm using in situ measurements.  

In the coming years new datasets will be acquired over the Scheldt area, also with new 

hyperspectral sensors like APEX (Airborne Prism Experiment). These datasets will be used to further 

validate and, if needed, to improve the current band ratio algorithm.  

In general, this paper has clearly indicated the potentials of remote sensing for assessing the surface 

water quality of rivers and estuaries. Nevertheless remote sensing data are rarely used in 

river/estuarine management practices. The advantages are however manifold and the surplus value to 

conventional in situ sampling is evident: a high spatial variability, a synoptic view, high repeatability. 

The restricted use of these data might on one hand be due to the spectral and spatial limitations of 

current satellite sensors and, on the other hand, the high cost involved in airborne acquisitions. In fact, 
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for these estuarine studies, data/sensor requirements include frequent revisits that increase image 

collection opportunities, high spatial (~10 m) and high spectral resolution or tunable spectral bands. 

Nowadays no single sensor on a satellite platform combines these specifications. Future missions look 

likely to follow the trend towards higher spatial and spectral resolutions but the temporal requirement 

will not be fulfilled in the near future. Imagery is often only acquired on demand, restricted by  

on-board storage capacity. In the near future an airborne system is therefore the only feasible solution 

for the problem at hand. In this study, the flexibility of the airplane has proven to be a big advantage 

because of (1) the difficulty to obtain cloud-free data in this area and (2) having the possibility to fly 

several tracks in a row, thereby increasing the number of coincident in situ samples. In order to reduce 

the cost associated with these airborne campaigns, and increase the flexibility even more, new 

Unmanned Aerial Systems (UAS) seem to be the way to go. Especially with growing interest in the 

development of light weight sensors that can be mounted on these UAS, for multispectral as as well 

hyperspectral, these systems provide a cost efficient and highly flexible alternative for the airborne 

acquisitions.  

Besides these technological developments, there is a strong need to focus on atmospheric 

corrections, including the correction for adjacency effects, and to improve the calibration of 

spaceborne and airborne sensors.  
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