

Kevin Noone Executive Director, IGBP

Outline

- What questions stimulated the development of the CVI?
- Basic principles
- Example results
- Ground-based examples
- Airborne examples

The big question:
Which particles form
droplets and ice crystals,
and which do not?

A Very Useful Number

$$Stk = \frac{\tau V}{L} = \frac{\rho_p d_p^2 V}{18\mu L}$$

Small Stokes numbers: particles behave like gases Large Stokes numbers: particles behave like rocks

Basic Principles

Lin & Heintzenberg, J. Aerosol Sci. 26, 903-914, 1995

Path Lines Colored by Velocity Magnitude [m/s] Jul 0B, 2004 FLUENT B.1 [3d, dp, coupled imp, ske]

Sampling efficiency

CVI-FSSP Comparison

Glantz, P., K. J. Noone, and S. R. Osborne, 2003: J. Atmos. Ocean Technol., 20, 133-142.

Example measurements

Direct	Indirect
CWC Nres SDres Os,res Oa,res Resid. Chem.	M _{res} Mass conc. in droplets Mass avg. D _d Particle size determining N _d Conc., comp. vs size

INTACC chemical analysis

- ★ Ice crystal residuals collected on Nuclepore polycarbonate membrane were analyzed with SEM-EDAX (*Energy dispersive x-ray analysis*)
- ★ Only elements with atomic number $Z \ge 11$ (Na) were considered in this study
- ★ Only particles ≥ 100 nm were analyzed
- ★ Groups identification: Hierarchical cluster analysis was applied to the X-ray intensities

Orographic supercooled clouds

- **★** Low N scavenging fractions (≤10%)
- ★ N dominated by submicrometer aerosol

Chemical influences on freezing

Field, et al., Q. J. R. Meteorol. Soc., 127, 1493-1512, 2001

Continental case

Targino, et al., Atmos. Phys. Chem. 6, 1977-1990, 2006

Cr-Fe: 58.8% Al-Silicates: 21.8 Mixed mineral: 8.4 S + organics: 7.6 Organics: 3.4

Clean marine case

Targino, et al., Atmos. Phys. Chem. 6, 1977–1990, 2006

Organics: 48.0%
Aged sea salt: 16.7
Aged Cr-Na: 16.7
Silicates: 11.8
S + organics: 4.9
Fe-rich: 2.0

Dilute droplets froze first

INTACC conclusions

- Freezing occurred very rapidly in the downdraft part of the cloud
- Freezing was inhibited when organic aerosols were present in large concentrations
- More dilute droplets (those that formed on smaller particles) appeared to freeze first

INCA

Seifert, et al., Atmos. Chem. Phys. 2002

INCA

Triangles - SH; Circles - NH

Seifert, et al., Atmos. Chem. Phys. 2002

INCA Conclusions

- SH residuals are larger, and more aerosol volume is incorporated into the crystals than in the NH
- Residual number dominated by particles < 0.1 µm, volume by particles > 0.1 µm. Sub-0.1 µm particles will control initial crystal concentrations
- The shape of the RSD is insensitive to T variations
- As crystal number increases, the residual volume mean diameter increases (large particles become more important)
- Scavenging ratios of 1% or less, and does not vary much with particle size; no strong preference for nucleation to occur on large particles
- Excellent agreement between CVI and FSSP-300

Seifert, et al., Atmos. Chem. Phys. 2002

Hypotheses & questions

Accumulation-mode particles control the number of cloud droplets

Organic compounds are a substantial fraction of the aerosol that forms cloud droplets

Organic compounds enhance ice formation in supercooled clouds

What are the size distributions of the scavenged and interstitial aerosol?

What is the chemical composition of the aerosol?

What are the chemical and physical properties of the ice residuals?

SOACED Instrumentation

Targino, et al., Atmos. Res. 86, 225-240, 2007

Overall chemical composition

Residual & interstitial dists.

SOACED conclusions

- Accumulation-mode particles don't always control droplet number
- Organic aerosols were a substantial fraction of the aerosol that formed cloud droplets

Acknowledgments

SOACED: Admir Targino,
Dave Covert, Lynn Russell,
John Ogren, Stephan
Borrmann, Frank Drewnick

INTACC: Paul Glantz,
Admir Targino, Paul Field,
and the MRF scientists,
technicians and crew

CVI Remarks

- Aerodynamically separates and samples cloud droplets and ice crystals; excludes small aerosol particles - excellent for looking at aerosol-cloud interactions
- A multitude of measurement techniques can be used with the CVI (even gases like H_2O_2)
- The combination of an interstitial sampling system and a CVI can produce real-time chemical and microphysical information about which particles do and do not form cloud droplets and crystals
- Possible artifacts due to droplet/crystal shattering and perhaps etching of the interior surfaces of the probe

What experiments would you like to do using a CVI?

Some of the aircraft that have carried a CVI

DLR Falcon 20

AES Convair 580

Photo: Stephan Mertes, IfT

- Inlets take up the emergency exit hatch (!)
- Complicated airflow
- CVI

Photo: Johan Ström

