The Counterflow Virtual Impactor (CVI)

Kevin Noone Executive Director, IGBP

Outline

- What questions stimulated the development of the CVI?
- Basic principles
- Example results
- Ground-based examples
- a Airborne examples

The big question: Which particles form droplets and ice crystals, and which do not?

A Very Useful Number

$$Stk = \frac{\tau V}{L} = \frac{\rho_p d_p^2 V}{18\mu L}$$

Small Stokes numbers: particles behave like gases Large Stokes numbers: particles behave like rocks

Sampling efficiency

Glantz, P., K. J. Noone, and S. R. Osborne, 2003: J. Atmos. Ocean Technol., 20, 133-142.

Example measurements

Direct

Indirect

CWC N_{res} SD_{res}

 $\sigma_{s,res}$

σ_{a,res} Resid. Chem. M_{res} Mass conc. in droplets Mass avg. D_d Particle size determining N_d Conc., comp. vs size

Airborne examples

INTACC INCA

INTACC chemical analysis

- ★ Ice crystal residuals collected on Nuclepore polycarbonate membrane were analyzed with SEM-EDAX (Energy dispersive x-ray analysis)
- ★ Only elements with atomic number Z ≥ 11
 (Na) were considered in this study
- ★ Only particles \geq 100 nm were analyzed
- ★ Groups identification: Hierarchical cluster analysis was applied to the X-ray intensities

Orographic supercooled clouds

★ Low N scavenging fractions (≤10%)
 ★ N dominated by submicrometer aerosol

Clean marine case

Targino, et al., Atmos. Phys. Chem. 6, 1977–1990, 2006

Organics:	48.0%
Aged sea salt:	16.7
Aged Cr-Na:	16.7
Silicates:	11.8
S + organics:	4.9
Fe-rich:	2.0

INTACC conclusions

- Freezing occurred very rapidly in the downdraft part of the cloud
- Freezing was inhibited when organic aerosols were present in large concentrations
- More dilute droplets (those that formed on smaller particles) appeared to freeze first

INCA

INCA Conclusions

- SH residuals are larger, and more aerosol volume is incorporated into the crystals than in the NH
- Residual number dominated by particles < 0.1µm, volume by particles > 0.1µm. Sub-0.1µm particles will control initial crystal concentrations
- The shape of the RSD is insensitive to T variations
- As crystal number increases, the residual volume mean diameter increases (large particles become more important)
- Scavenging ratios of 1% or less, and does not vary much with particle size; no strong preference for nucleation to occur on large particles
- Excellent agreement between CVI and FSSP-300

Seifert, et al., Atmos. Chem. Phys. 2002

Ground-based example

SOACED

What are the size distributions of scavenged and interstitial aerosol?

What is the chemical composition of the aerosol?

What factors control the activation of cloud droplets?

Hypotheses & questions

Accumulation-mode particles control the number of cloud droplets

Organic compounds are a substantial fraction of the aerosol that forms cloud droplets

Organic compounds enhance ice formation in supercooled clouds What are the size distributions of the scavenged and interstitial aerosol?

What is the chemical composition of the aerosol?

What are the chemical and physical properties of the ice residuals?

Ground-based example

Overall chemical composition

Drewnick et al., J. Atm. Chem., 56, 1-20, 2007

SOACED conclusions

 Accumulation-mode particles don't always control droplet number

 Organic aerosols were a substantial fraction of the aerosol that formed cloud droplets

Acknowledgments

SOACED: <u>Admir Targino</u>, Dave Covert, Lynn Russell, John Ogren, Stephan Borrmann, Frank Drewnick INTACC: Paul Glantz, Admir Targino, Paul Field, and the MRF scientists, technicians and crew

CVI Remarks

- Aerodynamically separates and samples cloud droplets and ice crystals; excludes small aerosol particles – excellent for looking at aerosol-cloud interactions
- A multitude of measurement techniques can be used with the CVI (even gases like H₂O₂)
- The combination of an interstitial sampling system and a CVI can produce real-time chemical and microphysical information about which particles do and do not form cloud droplets and crystals
- Possible artifacts due to droplet/crystal shattering and perhaps etching of the interior surfaces of the probe

What experiments would you like to do using a CVI?

A menagerie of flying machines

Some of the aircraft that have carried a CVI

NASA DC-8

Probe: Cynthia Twohy, OSU/NCAR

AES Convair 580

Inlets - Citation

 Inlets take up the emergency exit hatch (!)

 Complicated airflow
 CVI

Photo: Johan Ström

