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Measuring Temperature
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Measuring Temperature

* Static Air Temperature (SAT or Ts): This is the physical temperature of the
air which the aircraft is flying through. It is also know as the outside air
temperature (OAT); it is the temperature that we need to determine.

* Total Air Temperature (TAT or Tt): This is the temperature that would be
measured by a probe if all of the kinetic energy of the air resulting from the
aircraft's motion was absorbed. Because this is impossible, it can never be
measured!

* Recovery Temperature (Tr): This is the temperature that the total air
temperature is approximated by because of the incomplete recovery of the kinetic
energy of the air by the temperature probe.

* Measured Temperature (Tm): As the name implies, this is the temperature
that is actually measured by the aircraft's temperature probe. It differs from the
recovery temperature, Tr, because of parasitic heating or cooling of the
temperature sensor.

http://mtp.jpl.nasa.gov/notes/sat/sat.html




Measuring Temperature

http://mtp.jpl.nasa.gov/notes/sat/sat.html




Conclusion

You never get to directly
measure the quantity in

which you are interested




Types of measurements
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Lessons from Cloud Base
i

Time constants, concentrations, optics and such stuff




“Nice” Measurements

Measurement techniques that dont disturb the
sample all too much: optical probes




"Nasty” Measurements

Measurement techniques that really disturb the
sample: impactors, inlets, filters




Cloudwater Chemistry

What do we want to know about cloudwater
chemistry?




Mohnen Slotted Rod Sampler

® Cloud/precip.
droplets impact
on slotted rods

' ® Water runs down
rods into common

collector (flask)
inside the
aircraft

® Water sample
capped and saved
for analysis in
lab




Cloudwater Chemistry

Discussion: what do we need to know, and what
improvements can be made on our measurements?




Cloud Microphysics

What microphysical properties do we need to know
about clouds?
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Cloud Gun
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Replicators
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Forward Scattering Spectrometer
Probe (FSSP)
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Small Ice Detector (SID)




Small Ice
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2-D Probes

OPTICAL STYSTEM
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CAPS Probe

® Multiple Instruments in one flight canister, covering a sizing
range from 0.5um to 1550um, plus Hot-Wire LWC sensing,
Temperature and RH

® Cloud and Aerosol Spectrometer (CAS) section uses forward-
scatter and back-scatter techniques fo measure particles
from 0.5 um to 50um

® Cloud Imaging Probe (CIP) section uses a fast 64-element
photodiode array to generate 2-Dimensional Images of
particles from 25-1550um, as well as sizing in 1-Dimensional
Histogram form, and includes housekeeping data

® Liquid Water Content: Hot-Wire sensor measures up to 3g/m3

® Airspeed and Altitude measurements from the heated Pitot
tube

® Temperature sensor measures ambient air, +/- 1C

® Relative Humidity measurement via the Honeywell Humicap




CAPS Probe
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CAPS Probe
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Particle Volume Monitor
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Fii. 1. Schematic diagram of instrument for measurement
of liquid water content of fogs, clowds and hazes,




MRF Total Water Probe
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Supercooled Orographic Clouds

Photo: Paul Field, MRF




Supercooled Droplets - Freezing
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Jost, R. Gabriel, T. Reiner, M.O. Andreae, C.P.R. Saunders, A. Archer, T.W. Choularton,
M. Smith, B. Brooks, C. Hoell, B. Bandy, D.W. Johnson, and A.J. Heymsfield, Ice
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Ice Formation - Freezing Rates

Dark shading:
homogeneous freezing

Light shading:
heterogeneous freezing

From

Field, P.R., R.J. Cotton, K.J. Noone, P. Glantz, P.H. Kaye, E. Hirst, R.S. Greenway, C.
Jost, R. Gabriel, T. Reiner, M.O. Andreae, C.P.R. Saunders, A. Archer, T.W. Choularton,
M. Smith, B. Brooks, C. Hoell, B. Bandy, D.W. Johnson, and A.J. Heymsfield, Ice
nucleation in orographic wave clouds: Measurements made during INTACC, Quart. J.
Roy. Meteor. Soc., 127 (July), 1493-1512, 2001.



Optical Properties of Cold Clouds
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nucleation in orographic wave clouds: Measurements made during INTACC, Quart. J.
Roy. Meteor. Soc., 127 (July), 1493-1512, 2001.
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Crystal & Residuals
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Noone, K.B., K.J. Noone, J. Heintzenberg, J. Strém, and J.A. Ogren, In-situ
observations of cirrus cloud microphysical properties using the counterflow virtual
impactor, J. Atmos. Ocean. Tech., 10, 294-303, 1993.



Cold Clouds over the Alps
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Strém, J., B. Strauss, T. Anderson, F. Schréder, J. Heintzenberg, and P. Wendling, In
situ observations of the microphysical properties of young cirrus clouds, J. Atmos.
Sci., 54, 2542-2553, 1997.



Crystal Size Distributions

dN / dlog Dp (cm-3) (ambient)

From

Strém, J., B. Strauss, T. Anderson, F. Schréder, J. Heintzenberg, and P. Wendling, In
situ observations of the microphysical properties of young cirrus clouds, J. Atmos.
Sci., 54, 2542-2553, 1997.



Crystal & Residual Size Distributions
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Strém, J., B. Strauss, T. Anderson, F. Schréder, J. Heintzenberg, and P. Wendling, In
situ observations of the microphysical properties of young cirrus clouds, J. Atmos.
Sci., 54, 2542-2553, 1997.



Cloud Microphysics

Discussion: Are we still “searching under the
streetlight”? If so, what new things do we need to




Aerosol Properties

What do we want to know about aerosol chemistry,
microphysics and optics?
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Aerosol Chemistry
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Putaud, et al. (2002) http://ies.jrc.cec.eu.int/Download/cc
From Noone, et al., Tropospheric Aerosols and Clouds, in Towards Cleaner Air for Europe - Science, Tools and Applications,

edited by P.M. Midgley, P.J.H. Builtjes, R.M. Harrison, and K. Tgrseth, pp. 157-194, Margraf Publishers, Weikersheim,
2003.




Organic Aerosols
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From Noone, et al., Tropospheric Aerosols and Clouds, in Towards Cleaner Air for Europe - Science, Tools and Applications,

edited by P.M. Midgley, P.J.H. Builtjes, R.M. Harrison, and K. Tgrseth, pp. 157-194, Margraf Publishers, Weikersheim,
2003.




Black & Organic Carbon

E=9POC (ugCim*) EEREBC (ugCim?)
s POM / PM10  wemBC / PI10

T kT

Jan Feb Mar Apr May Jun Jul Aug Sep Oct MNov Dec

Data from Ispra, Italy (2000). From Noone, et al., Tropospheric Aerosols and Clouds, in Towards Cleaner Air for Europe -
Science, Tools and Applications, edited by P.M. Midgley, P.J.H. Builtjes, R.M. Harrison, and K. Tgrseth, pp. 157-194,
Margraf Publishers, Weikersheim, 2003.




Black & Organic Carbon
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Aerosol Sampling Challenges

Many chemical species (e.g., ionic,
elemental, organic)

Wide range of sizes - nanometers to
hundreds of micrometers

Aerosols are a matrix quantity rather than
a scalar one

Very different conditions inside and outside
the aircraft




Aerosol Inlets

Getting stuff from outside the aircraft to inside
where you can do something with it




Inlet Issues

VERY different conditions outside aircraft,
in inlet system, and inside aircraft
Calibrating inlets and characterizing losses
Gases, particles, droplets and crystals:
what to do with them all?

Inlet placement: we all want good seats on
the plane




Stokes Number

Small Stokes numbers: particles behave like gases
Large Stokes numbers: particles behave like rocks




Inlets - Citation

® Inlets take up
the emergency
exit hatch (!)

® Complicated
airflow

Photo: Johan Strom



Isokinetic Inlet




Snoopy Inlets
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Snoopy Front Cabin




Snoopy Front Cabin




MRF FSSPs & PVM




Low Turbulence Inlet
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Low Turbulence Inlet




Aerosol Inlets

Discussion: What can we do to make aerosol inlets
more intercomparable?




Aerosol Chemistry

Filter-based measurements, wet chemistry, single
particle analysis, mass spectrometry




Airborne Filter Samplers

Heubert, et al., JGR 95 (D10), 1990




Airborne Filter Samplers

Heubert, et al., JGR 101 (D2), 4413-4423, 1996




Particle Into Liquid Sampler (PILS)

Brechtel Manufacturing, Inc.
1789 Addison Way, Hayward, CA 94544
Phone: (510) 732-9723
Fax: (510) 732-9153
www.brechtel.com
bmi_info@brechtel.com
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Convair 580 - ICARTT




Particle Into Liquid Sampler (PILS)

Altitude (km)

Hayden, et al., JGR, in press




Counterflow Virtual Impactor

Condensation Particle
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Single Parfticle Analysis
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Targino et al., Atmos. Chem. Phys. 6 (2006) 1977-1990




Aerosol Inlets

Discussion: What can we do to make aerosol inlets
more intercomparable?




Aerosol Microphysics

Optical, electrical and other methods




Aerosol particle sizing

3-200nm Electrical mobility

Optical particle counters




Differential Mobility Analyzer
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Passwe Caw’ry OPC

® Uses 632nm laser to
illuminate particles

® sizes single particles
between ca. 0.1 to
3um

® sensitive to shape,
refractive index




Passive Cavity OPC
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Aerosol Microphysics

Discussion: What is the airborne particle sizing
instrument dream team? What differences do you
expect between land-based sampling and airborne

sampling?




