

Satellite Mission Development and Validation: Capabilities and uncertainties of aircraft campaigns

Presented by: Dirk Schuettemeyer Earth and Mission Science Division

European Space Agency

My Background

Master from Bonn University, DE, Thesis on passive Microwave remote sensing PhD from Wageningen, NL; Thesis on ground-based remote sensing Joined ESA in 2009

- Campaign Scientist for FLEX, FORUM, EarthCARE, S5P
- Also work on Sentinel-3 (mainly Fire) and LSTM
- Mission Scientist for MICROWAVE Sounder (MWS) on board of MetOp Second Generation and Arctic Weather Satellite (AWS)
- Preparatory work for future precipitation mission including small sats

Today

- Introduction
- Earth Observation at ESA with a focus on airborne activities
- EO Campaigns Setup
- Campaigns for Satellite Mission Development
- EO Calibration/Validation Concepts
- Discussion on important aspects for airborne validation
- Summary & Conclusions

· __ ■ ■ ↓ ■ ↓ ■ ↓ ■ 🔚 🚍 🔚 ■ ■ ■ 🔚 = = 📲 🛶 🏴 ■ ■ 💶 📲 ➡ 💥 ^{Eu}c⇔^{an Sp}[♦]^{gency}

Why do we need satellites - the issue of scale ?

Polar Explorer or Polar Scientist **Speed:** 20km/day **Measurements:** Points or profiles along the way (cm resolution) **Endurance:** 12h/day or approx 20km (depends on food, good health, holidays,

equipment, weather conditions)

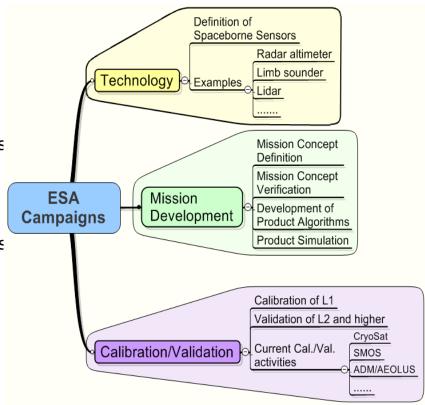
Twin Otter **Speed:** 175km/hour **Coverage:** Depends on instrument, generally swaths of 1m-1km with resolution from cm to meters

Endurance: 600 km or 5 flight hours before refueling (dependent on flight permissions, pilots, weather conditions)

CryoSat Speed and coverage: 23000 km/hour with resolution at 100s of meters Endurance: 9 years and counting, operates 24 hours/day, no flight permission, don't care about weather...

Earth Observation Missions

__ 88 km ## 88 🗯 ₩ #88 🗮 🔚 88 Km 🔤 🔤 88 88 mm № 88 💶 ## km 💷 88 km № %


Role of ESA Earth Observation campaigns

1. ESA campaign activities started in 1981 1. 172 campaigns as of January 2021 2. Typically 6-10 campaigns/year **2.** Strategic objectives: 1. Support strategic goals of EO Science Strategy Transnational access to airborne facilities 2. in member states 3. Foster partnerships with national and international organisations **ESA Campaign activities address:** Testing technology/Observing techniques 1. Optimising requirements/design and 2. reducing mission risk 3. L1-L2 Algorithm prototyping/Product simulation 4. Calibration/Validation

4. Campaign data archive supporting science and application development

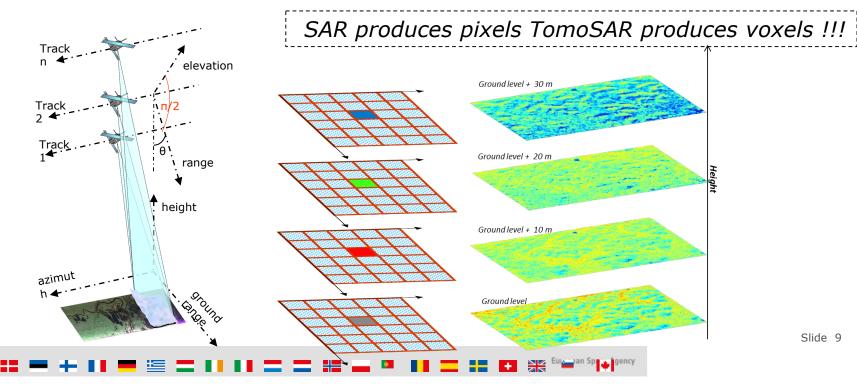
3.

Europan Sp

Campaigns for different project phases

	Pre-Phase A	Phase A Feasibility	Phase B Design	Phase C/D Development	Phase E1 Commissioning	Phase E2 Operation	Data Archive
Technology	x	х					Х
Mission Development (Geophysical)	x	x	x	х			x
Mission Development (Simulation)	x	x	x	х			х
Cal/Val				Х	Х	Х	х
Science/ Applications						х	x

Earth Observation Data Levels


- 0 Unprocessed instrument data
- 1A Unprocessed instrument data alongside ancillary information
- 1B Data processed to sensor units, e.g. brightness temperatures
- 2 Derived geophysical variables, e.g. sea ice concentration
- 3 Variables that are mapped on a grid, e.g. data using EASE-Grid
- 4 Modelled output or variables derived from multiple measurements

Early Developments: TOMOSENSE

TomoSAR systems employ a RADAR sensor flown along multiple trajectories

- Image formation by Digital Processing techniques
- \Rightarrow Three dimensional representation of Radar intensity at a given wavelength

Flight Configuration

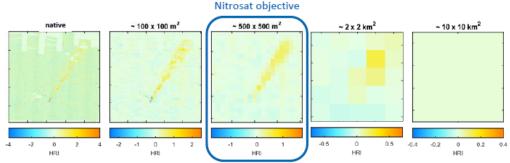
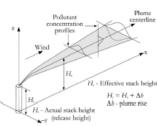

Slave flights 20 m to the left w.r.t. Master (if Radar is left-looking) Airborne picture Master flights ahead by 20/30 m (preferably 20 m) of the master plane from the slave in Master Slave acquisition formation 26.5 m ≈20/30 m 1-26.5 m Slave starts 26.5 m lower than Master in the first <----> flight 20 m Then decreases flight height by 0.5 m every pass -36 m Radar Line

Figure 13 - C-Band flight formation.

Mission Development: Example EE11 Nitrosat

esa


- Nitrosat is an ESA Earth Explorer 11 candidate which aims to measure NO2 and NH3 at a spatial resolution of 500 meters or below
- Airborne campaigns started in 2021 and will proceed in 2022 focussing on point and area sources
- Currently no airborne instrument available with the suitable specs

Fluxes estimates

- The traverse method enables one to retrieve fluxes from small plumes
- Results dependent on assumed plume altitude:

$4000 \pm 3000 \text{ t NH}_3/\text{yr}$

A. Leelossy, et al. (2014). Dispersion modeling of air pollutants in the atmosphere : a review. Open Geosciences, 6(3).

compared to 400 t NH_3 /yr emissions reported in the European Pollutant Release and Transfer Register (E-PRTR)

Aircraft observations of NO2 and NH3 over selected locations in Germany Lara Noppen et al 2021

What is an inverse or retrieval Problem?

Almost any measurement you make...

- When you measure some function of the quantity you really want, you have a retrieval problem.
- Sometimes it's trivial, sometimes it isn't.

Various aspects:

- Formulate the problem properly:
 - Describe the measurement in terms of some Forward Model
 - Don't forget experimental error!
- Finding a solution, inverting the forward model
 - Algebraic, Numerical, No unique solution, No solution at all
- Finding the 'best' solution
 - Uniqueness a unique solution may not be the best..., Accuracy, Efficiency
- Understanding the answer

https://earth.esa.int/atmostraining2008/Wed_C_rodgers.pdf

Things to think about!

- Why isn't the problem trivial?
 - Forward models which are not explicitly invertible
 - Ill-conditioned or ill-posed problems
 - Errors in the measurement (and in the forward model) can map into errors in the solution in a non-trivial way.
- What to measure?
 - Does it actually contain the information you want?
- Updating existing knowledge
 - You always have some prior knowledge of the 'unknown'
 - the measurement improves that knowledge
 - the measurement may not be enough by itself to completely determine the unknown
- Ill-posed problems
 - You cannot solve an ill-posed problem. You have to convert it into a well-posed problem.
 - Which of an infinite manifold of solutions do you want?

https://earth.esa.int/atmostraining2008/Wed_C_rodgers.pdf

Summary so far

- General setup for Campaigns at ESA
- Scales matter
- Balance between best quality and fit for purpose
- Retrieval as a challenge

Things to keep in mind when working on these topics

Access to ESA Campaign Data

- 1. ESA campaign data available to interested PIs
 - a. Formatted and documented datasets including DOIs
 - b. Data Inventory
 - c. Final report with full description of campaign activity and analyses
- Final report accessible directly through web
- Access to datasets provided through Category 1 mechanism (short proposal incl. identification of desired datasets)
- 4. Currently **more than 80** campaign datasets available

European Space Agency												
European Space Agency											6 66	
earth online	Find something on Earth Online			R.								
THEMATIC AREA	80Q	ALL	DATA	NEWS	MISSIONS	EVENTS	TOOLS	ACTIVITIES	INSTRUMENTS	CAMPAIGNS	DOCUME	
Agriculture - Armosphere - Biosphere - Constate - Cryosphere - Land Surface - Decens - Solid Earth -		Relevance	S small sate	it the ground-b.	ased, ship-borne, ballou ments that validate orb nt.							
▼ INSTRUMENT TYPE	80Q											
Akimeters Imaging Rodars Interferonneters Interferonneters Magnetic Field/Electric Field Instruments Magnetic/Motion Sensors P SAR Peston Optical Detectors Pestoneng/Narogation Profilers/Sounders		Sn	ampaign 		Campaign 2019 2019 SARSense 2 he SARSense campaign in		CTMEE's sinher	Campaign 2019 CIMREx te campaign aimed to 5		Campaign 2018 - 2019 FIRMOS esparation of the Earth F		
MISSION	000	support the develo	pment of future conce	pts [Gi	rmany) in summer 2019 v support the ESA Copernicu	was performed to	the sea ice micr	owave emissions from	various miss	ion, a new facility name nfrared Radiation Mobile	ed FIRMOS (F	
Acolus Acolus Acolus Acolus Acolus Acolus Bomass COSMO StayMed COSMO StayMed COSMO StayMed Cosmos Deemoss Deemoss Deemoss Deemoss			r the cryosphere. ampaign		Campaign Campaign 2018	e milin hunold		imes around Svalbard ar Campaign REN Antarctica 2017 2017 - 2018		Campaign		
▼ INSTRUMENT	ହେତ୍ୟ	Sentinel-3 O	LCI Tandem 201	.8	Wind Val I	п	CryoVex KA	REN Antarctica	2017	BelSAR Campaig	n 2018	
AATSR ACC ACE-FTS AIRSAFE		In 2018, a tandem between the Sentir	campaign was conduc el-3A and 3B satellite future FLEX mission.	ted : s to v	The objectives the WindVa were derived from results, issons learnt of the last air	l III campaign experience and	ESA's CryoVEx/I place in Antan	2018 Karen 2017-18 campaig ttica in from Dec 2017 t mpaign was composed i	The n took o Jan inter	BelSAR project intender airborne campaign for ! ferometric measuremen	d to carry out SAR bistatic	

CAL/Val ???

Why Calibration and Validation?

Calibration is "quantitatively defining the system response to

known controlled signal inputs" (http://calvalportal.ceos.org/)

Instrument Calibration is the responsibility of Mission

management

- Instrument gains/offsets, etc
- Spectral calibration
- Vicarious calibration (e.g. Sentinel-3 SLSTR fire channels...)

Calibration is a well managed process

Calibration is specific and requires dedicated activities and teams with clear reporting lines and often mission/financial implications.

Validation Definitions:

- Validation is "the process of assessing, by independent means, the quality of the data products derived from the system outputs" (CEOS Definition)
- Rodgers (2000) defined the purpose of validation as the confirmation that the theoretical characterization and error analysis actually represent the properties of the real data.
- In the metrology (i.e., "measurement science") community, validation is understood to be a verification against requirements which ensure that the data are adequate for an intended use

How to Validate?

Type 0: Quality Assurance

- Analyze data on means (expected) and extremes (outliers)
- Visual inspection of data plotted on global maps

Type 1: Statistical Comparisons to Standard

- Ground based systems and networks, balloons, ...Validated satellite instruments on same and other platforms
- Perform statistical comparisons, focus on differences

=> Yields statistics on mean, median, variance, correlation, ...Plots of difference versus measurement geometry parameters

Type 2: Different Algorithm Statistical Comparisons

 Run different algorithms on same level 1 data. Perform statistical comparisons, focus on differences

=>Yields statistics on mean, median, variance, correlation, ...Benchmark effect of different assumptions and approaches https://earth.esa.int/atmostraining2008/

Type 0 validation (Quality Assurance) will tell you:

- Whether satellite data values make sense (min, mean, max),
- Whether its spatial distributions (global maps) make sense,
- Under which circumstances (clouds, dust storms, high sza) and over which geographical regions (land, ocean, desert, snow) there are problems,
- To what aspect these problems are related (algorithmic, surface, measurement geometry, polarization)
- Feed-back to algorithm developers,
- Feed-forward to scientific users!

Type 1 validation will provide you with:

- Qualitative agreement of satellite and reference data,
- Qualitative differences between satellite and reference data,
- To what aspect these differences are related (algorithmic, surface, measurement geometry, polarization),
- Feed-back to algorithm developers,
- Feed-forward to scientific users!

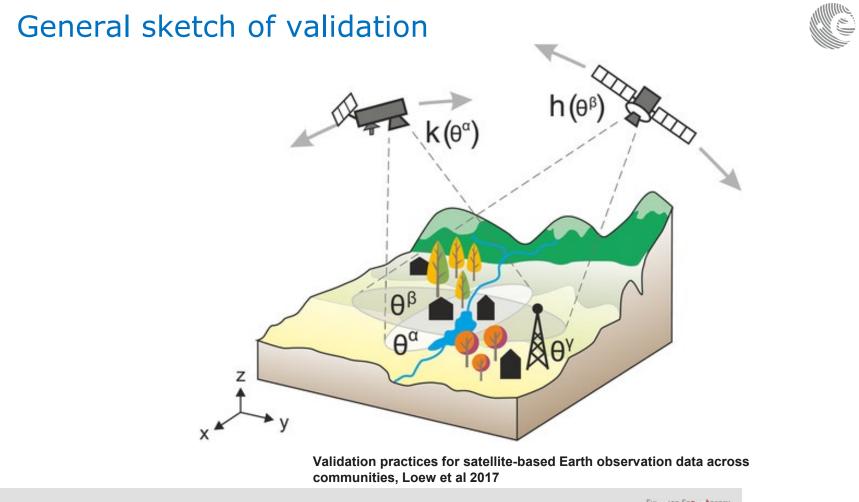
Type 1 validation quantifies the data quality but only under those circumstances covered!

- airborne and balloon observations supplement fixed position ground based observations to a certain extent
- same platform satellite instrument extends global coverage

Type 2 validation will provide you with:

- a test bed for algorithmic assumptions (cloud heights, types of surface, ghost columns, aerosols, interfering gases, ...),
- a qualitative assessment of the influence of such assumptions (apply various approaches and benchmark effects),
- feed-back to algorithm developers (best choice),
- feed-forward to scientific users (optimal choice)!

Concept of Fiducial Reference Measurements?



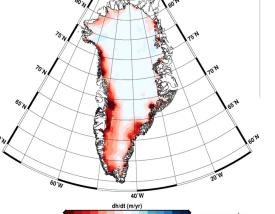
FRM are the suite of **independent ground measurements** that provide the maximum scientific utility/return on investment for a satellite mission by **delivering, to users, the required confidence in data products**, in the form of independent validation results and satellite measurement uncertainty estimation, over the duration of the mission (*Donlon et al, 2014*)

IF we have **no FRM** then we cannot really use the mission as we have no idea how accurate data products are

IF we have **many FRM** this is great scientifically (statistical significance, geographic coverage, robust network...) but incurs additional costs with reducing ROI

There is a balance between these two extremes to deliver a satellite mission with a KNOWN product quality that is "fit for Purpose"

esa

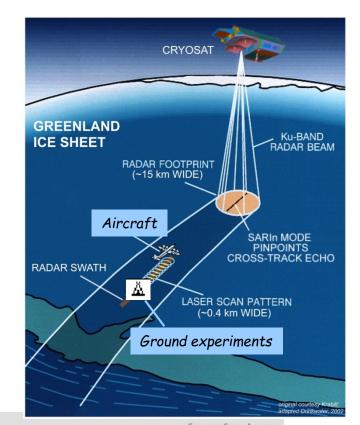

Example CryoSat: The Ice Mission

- First interferometric altimeter in space
- Global sea ice thickness
- measurements

oceanogra

- Data used for ice research, but
 - increasingly also for

Overall experimental concept



Coordinated airborne and ground measurements required to bridge the spatial scales between ground and satellite measurements Airborne instrumentation configuration:

> ASIRAS – airborne radar altimeter which serves as a proxy for SIRAL on-board Cryosat

Laser scanner – to address error sources due to penetration

Support instruments (DGPS, data recorders, cameras)

Uncertainty Concept for validation campaigns

The validation of satellite-based products with varying spatial resolution against point-like ground-based measurements (fixed or mobile) or against airborne measurements with a different spatial resolution involves uncertainties.

Uncertainty satellite:

Uncertainty Instrument, L1, and L2 processing $\sigma_{Sat}^2 = \sigma_{Ins\&L1}^2 + \sigma_{L2}^2$

Uncertainty independent measure:

Uncertainty Instrument, L1, and L2 processing, and **representativity** $\sigma_{Ind}^2 = \sigma_{Ins \& L1}^2 + \sigma_{L2}^2 + \sigma_{representativity}^2$

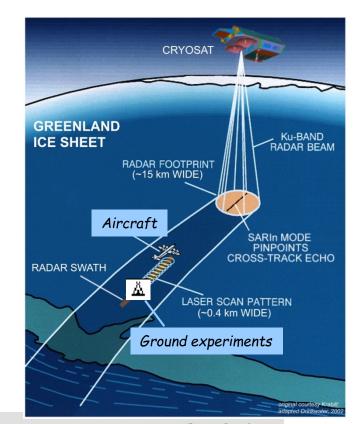
Uncertainty Instrument, L1, and L2 processing, and representativity

 $\sigma_{Ind}^2 = \sigma_{Ins \& L1}^2 + \sigma_{L2}^2 + \sigma_{representativity}^2$

- The actual σ^2_{repres} depends on the actual variable to measure
- σ^2_{repres} related to spatial variability and temporal variability
- Satellite-based products are routinely validated against ground-based reference data
- Usually the ground-based data are not available on a spatial scale relevant to the validation
- Fortunately, there are campaigns that can provide data with (sufficient) spatial resolution
- Accurate airborne measurements with sufficient spatiotemporal coverage are available
- ESA Experience in this context with light-weight sensor below 5kg e.g. AirFLOX, SWING
- To a smaller extent with hyperspectral, thermal and also SAR

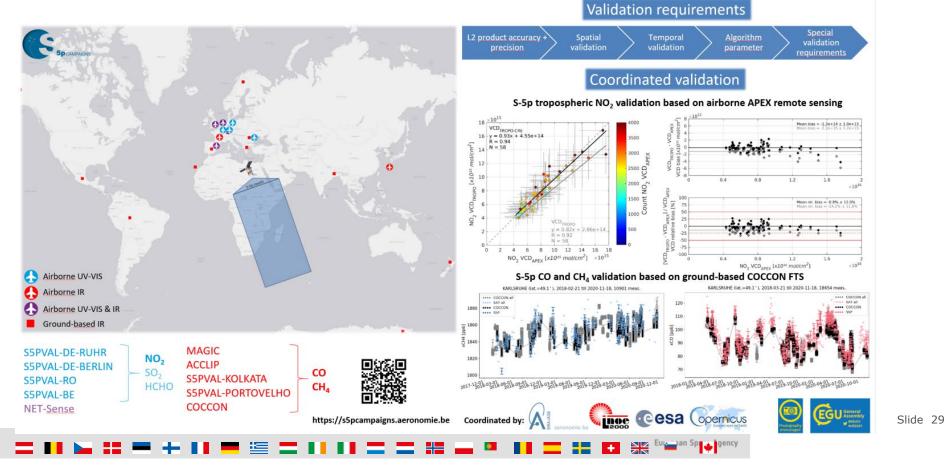
=> This enables recurrent spatial mapping by means of combined satellite, airborne and ground-based observations

Overall experimental concept

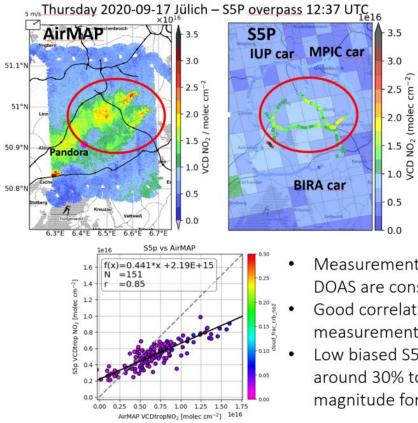


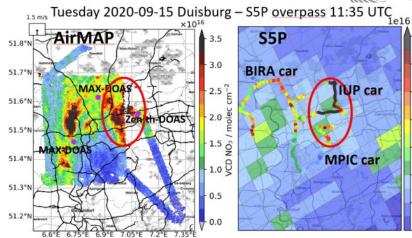
Coordinated airborne and ground measurements required to bridge the spatial scales between ground and satellite measurements Airborne instrumentation configuration:

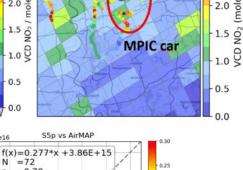
> ASIRAS – airborne radar altimeter which serves as a proxy for SIRAL on-board Cryosat

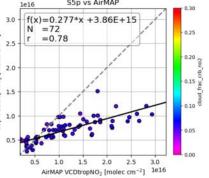

Laser scanner – to address error sources due to penetration

Support instruments (DGPS, data recorders, cameras)




Sentinel-5p Validation Campaigns – Activities in 2021-2022




S5P Airborne & Ground-based Validation

- Measurements of AirMAP and car DOAS are consistent
- Good correlation of S5P and AirMAP measurements
- Low biased S5P TROPOMI NO₂ data of around 30% to 45%, with varying magnitude for different days and areas

Kezia Lange et al. 2021 - klange@iup.physik.uni-bremen.de

3.5

3.0

2.5 ŝ

(molec

Capabilities, Challenges and Limits

- By underflying satellites one can obtain spatial and temporal high collocated measurements but only for smaller areas
- In general one might expect larger uncertainties for faster processes in the atmosphere compared to the land surface
- Capabilities and uncertainties of aircraft data still need to be studied
- For example, Lammert & Ament (2015) used a perfect model approach to study uncertainties. They excluded temporal aspects!

Question: How to perform regional validation by means of airborne observations? (e.g. Latin Hypercube sampling?)

Some general summary comments

- ESA campaign activities responding directly needs of the EO programmes in efficient and effective way and play a key role in
 - preparing future EO missions
 - supporting mission development
 - •Cal/val for missions in orbit

•supporting wider science community through the ESA campaign database on the EOPI portal

- Expanding international collaboration (NASA, EC e.g. EUFAR, National Agencies) leading to pooling of resources and enhanced science and mission related return (e.g. enabling campaign activities not possible in isolation)
- No dedicated airborne programme at ESA at present (i.e. no regular calls for industry or similar). Requirements and implementation solutions usually through advisory mechanisms, PIs and knowledge of opportunities.
- Expanding industrial interest in airborne sensors and activities in the context of UAVs/Drones and medium and high altitude platforms

_ \$\$ ▶ \$\$ ━ + \$\$ ■ ₩ ½ = 2 \$\$ \$\$ \$\$ \$\$ \$\$ ****** • \$\$ ****** • \$\$ ****** • *****

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

> ariensi Biskepistosesiloizenei utioi 0541000001501101191 utioi 05420511011

thanks!

→ THE EUROPEAN SPACE AGENCY

Thanks again!