National Aeronautics and Space Administration NASA

EXPLORE EARTH

A Time of Change for Earth Science Research: B777-200ER

Derek Rutovic NASA Airborne Science Program, Deputy Director June 28, 2023

Airborne Science at NASA, Why?

Scientific

Programmatic

- Make important scientific measurements not possible from satellite or surface-based platforms
- Calibration and validation of satellite remote sensing observations and models
- Develop new remote sensing and in-situ instruments
- Develop early career investigators
- Develop leadership skills in promising early and mid-career investigator

Mission Flight Tracks, 2014 - Present

Airborne Science, Core Platforms

Airborne Science, Core Platforms

DC-8 Historical Requirements

- DC-8 acquired to replace the CV 990
- Missions have relied on the DC-8 for the following requirements
 - Heavy Lift enables multiple payloads to provide coincident measurements most often for atmospheric chemistry, weather, and instrument inter-comparisons (ASCENDS)
 - Long range enables measurements across regions/basins to enable process studies over large regions
 - Vertical profiling the long endurance capability enables sampling from the surface to 12km with repeat profiles at various altitudes
 - Onboard operators the ability to host instrument operators allows for adjusting instruments during a mission in addition to enabling science collaboration in real time, backbone support for SARP

So, Why Replace the DC-8?

- With few pilot simulators available and limited spare parts, NASA's Armstrong Flight Research Center suggested that the DC-8 would end operations in 2025
 - Fuel probes, brakes, tires, emergency door slides
- Market research showed viable, affordable, vibrant used aircraft market

How Do You Replace the DC-8?

Independent Analysis of Platform Alternatives NASA Langley Research Center and Analytical Mechanics Associates 2017 - 2018

Large commercial aircraft Military aircraft Fleet of GVs Cost per payload pound per mile

> Best Replacement Option: B767-200ER

National Academies of Science Study Assessed Long Term Need for Long Range Aircraft 2019-2021

"NASA should acquire, maintain, and operate a large aircraft ... to address priority questions developed for the 2017 Earth Science ... Decadal Survey." Budget Approved 2022

8

Aircraft Procurement Timeline

- B767 vs B777 and the Amazon Prime Air market effect
- Selected a Japan Airlines B777-200ER that was a summer 2020 COVID casualty
- Not a Government contract: purchased via aviation support contractor!
 - 4 months from RFP release to contract award
 - 3 months to bring aircraft out of preservation
- Delivered to NASA LaRC on December 15th, 2022

Aircraft Delivery

- Engineering design, analysis, and modification efforts were commencing in parallel with the aircraft procurement process
 - Engineering "Dream Team" assembled from across the Agency to complete "in-house" modifications
 - 4 participating Centers
 - New model of ASP HQ-driven team interleafing with Center airworthiness
 - Modification broken up into two phases
 - "In-House"
 - Research power, network and data, SATCOM, ICS, dropsonde/sonobuoy, research antennas
 - Completed SRR, January 6th, 2023
 - Launched into preliminary design and have completed 7 PDRs to date
 - Vendor modification for structural portals
 - RFP release in July 2023, award September
 - What will the capability be: ???

Dates Completed		3	Q FY2	2	4	Q FY2	2	1	Q FY2	3	2	Q FY2	3	3	Q FY2	3	4	Q FY2	3	1	Q FY2	4	2	Q FY2	4
Aircraft Procurement	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Procurement Initialization		\bigstar	4/25																						
RFP Development																									
RFP Released			\bigstar	5/16	5																				
Proposal Evaluation/Selection							\bigstar	9/16																	
Aircraft Purchase										\bigstar	12/1	5													
Aircraft Modification																									
Establish Team								1	.0/17																
Requirements Development											† 1,	/6													
Preliminary Design, In-House																									
Critical Design, In-House																									
Modification, In-House																								_	\rightarrow
RFP Development, Major Mods												\bigstar	2/12												
RFP Released, Major Mods																									
RFP Evaluation/Selection, Major Mods																									

Network Rack

*Generic components shown, final components similar in size & weight

*WMD L-RER 10U shown

NASA

Equipment at each rack includes:
 AX GPS splitter + tray
 GPS Source MS14

- Standard 19" rack, 24" depth

LaRC on various aircraft
• Total weight ~175 lb

– Weight = 21,14 lb

(ea)

Rack design:

0.624 lb ea + mounting provisions = 1.5 lb

 2X Cisco 9300 network switch ("Distribution Switches") = 15 lb (ea)
 1X Falcon ED4-2400RM-3/1-6-M UPS = 45 lb 1X Falcon EDBR-15H-M UPS battery bank = 60 lb

 Welch Mechanical Designs (WMD) Lightweight Rugged Electronics Rack (L-RER), 10U height

- Rack is aviation certified and used extensively by

3

	3	Q FY2	24	4	Q FY2	4	1	Q FY2	5	2	Q FY2	5	3	Q FY2	5	4	Q FY2	5	1	Q FY2	6	2	Q FY2	6
Aircraft Modification (cont.)	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Modification, In-House																								
Modification, Major Mods																								
Major Scheduled Maintenance																								
Aircraft Paint																								

B777-200ER Performance

LFI B777-200ER

B777-200ER Performance

Aircraft	Payload Weight (Ibs)	Fuel Load (%)	Range (nmi)	Endurance (hr)
DC-8	50,000*	100	~5000	11
	50,000	55	5400	11.7
B777-200ER	50,000	100	9000	19
	100,000	85	7400	15.6

*Approximate ATom-4 payload weight: instruments, passengers, etc.

- B777-200ER will have unmatched payload and range capability for the airborne research community for decade to come unlocking possibilities that were never achievable before
 - True polar, worldwide platform
 - Can overfly large geographic regions where basing aircraft has been difficult in the past
 - Increased collaboration with international partners with increased payload capacity

Question for EUFAR

- NASA Airborne Science does not have any "low and slow" core aircraft: use commercial services like Dynamic Aviation, Kenn Borek Air
- Always searching for more options in this flight regime: status of CASA 212??

BACKUP

20

DC-8 Missions

- ATom (2016-2018)
- FIREX-AQ (2019)
- SARP (2009-2019)
- CPEX (2017)
- CPEX2 (2019)
- HIWC (2015, 2017)
- KORUS-AQ (2016)
- ASCENDS (2013, 14, 16, 17)
- OLYMPEX (2015-2016)
- PolarWinds (2015)
- PECAN (2015)
- SEAC4RS (2013)
- GCPEX (2012)
- DC3 (2012)
- Operation IceBridge (2009-2018)

- ARCTAS (2008)
- TC-4 (2007)
- INTEX-B (2006)
- INTEX-NA (2004)
- SOLVE II (2002-2003)
- TRACE-P (2001)
- SOLVE (1999-2000)
- PEM-Tropics B (1999)
- SONEX (1997)
- PEM-Tropics (1996)
- PEM-WEST B (1993-1994)
- TOGA-COARE (1993)
- TRACE-A (1992)
- AASE II (1991-1992)
- PEM-WEST (1991)

DC-8 Capabilities and Features

Description:

Crew: Two Pilots, Flight Engineer, Navigator Length: 157 feet Wingspan: 148 feet Engine: Four CFM56-2-C1 High Bypass Turbofan Jet Base: Dryden Aircraft Operations Facility, Palmdale, CA

Performance

Altitude: 1,000 to 41,000 ft Range: 5,400 nautical miles Duration: 12 hours Speed: 425 – 490 knots True Air Speed (cruise) Payload: 30,000 lb

Accommodations

Zenith and nadir instrument ports

Modified window ports for instrument and probe mounting

External antenna mounts

Wing pylon instrument mounts

Optical windows of various materials

Dropsonde delivery tube

Air and aerosol sampling probes

Standard equipment 19-inch racks

Laser chiller unit

Both 400 Hz and 60 Hz power available to experimenter stations Up to 20 racks and 25 instruments typically accommodated Seating for up to 44 experimenters and flight crew

- Heavy Lift enables multiple payloads to provide coincident measurements most often for atmospheric chemistry, weather, and instrument inter-comparisons (ASCENDS)
- Long range enables measurements across regions/basins to enable process studies over large regions
- Vertical profiling the long endurance capability enables sampling from the surface to 12km with repeat profiles at various altitudes
- Multiple payload types: in situ, active, passive
- Onboard operators the ability to host instrument operators allows for making adjustments to instruments during a mission in addition to enabling science collaboration in real time
- All weather capability
- International basing