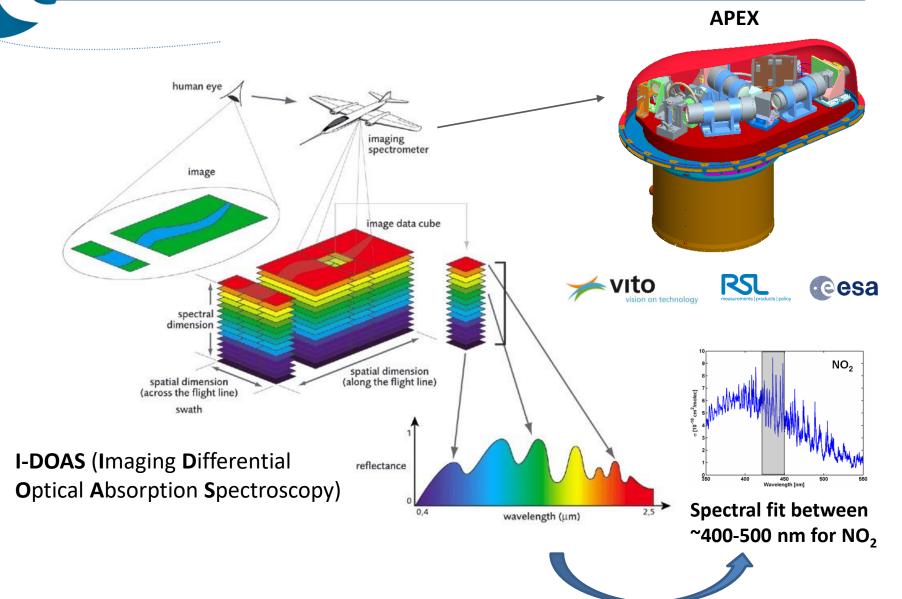
Airborne remote sensing in support of atmospheric satellite missions

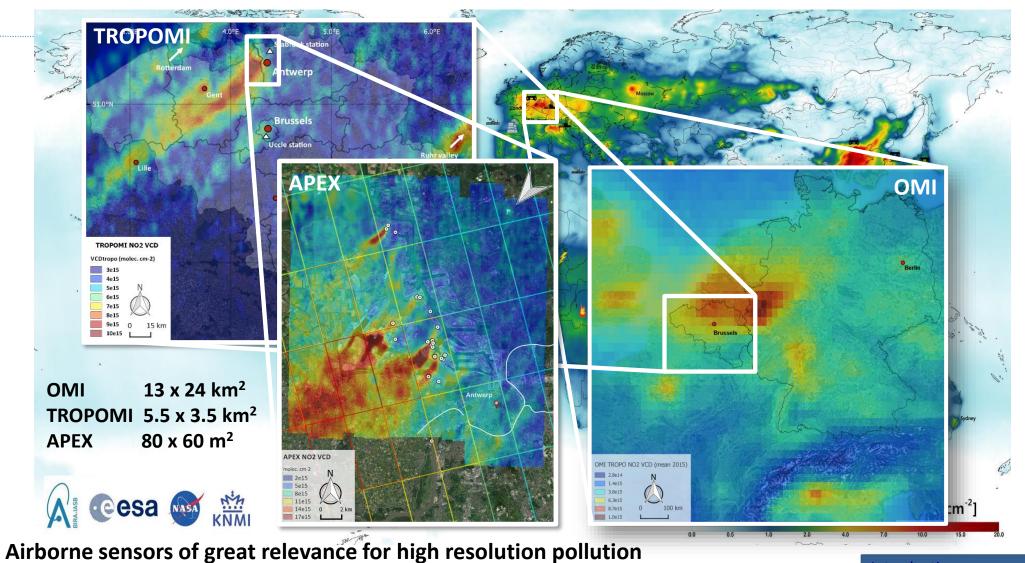
Frederik Tack, Alexis Merlaud, Michel Van Roozendael

EUFAR Airborne Science Webinar, 15-06-2022

Outline

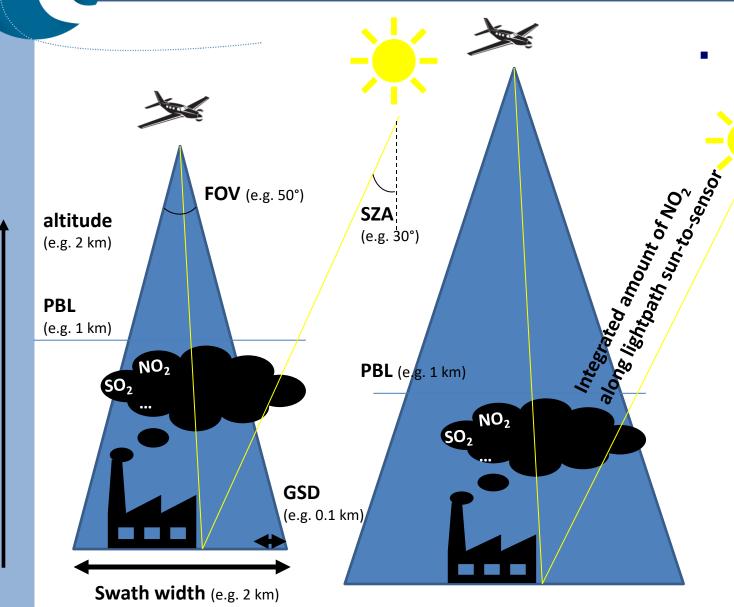

Introduction to airborne imaging

- Airborne Imaging Differential Optical Absorption Spectroscopy (I-DOAS)
- Motivation
- Key applications
- Flight planning and survey strategies
- Airborne imaging systems
- Airborne imaging in support of atmospheric satellite missions
 - Validation of satellite missions, dedicated to AQ and climate (ESA SVANTE/QA4EO project \rightarrow S5P)
 - Support to future satellite mission design (ESA NITROCAM project \rightarrow NITROSAT)
- Conclusion & perspectives


Focus on hyperspectral imaging/mapping of UV-VIS products (mainly tropospheric NO₂)

Airborne imaging spectroscopy

Product: Slant column densities (SCD): integrated amount of molecules along the lightpath, expressed as molec. cm⁻² Motivation

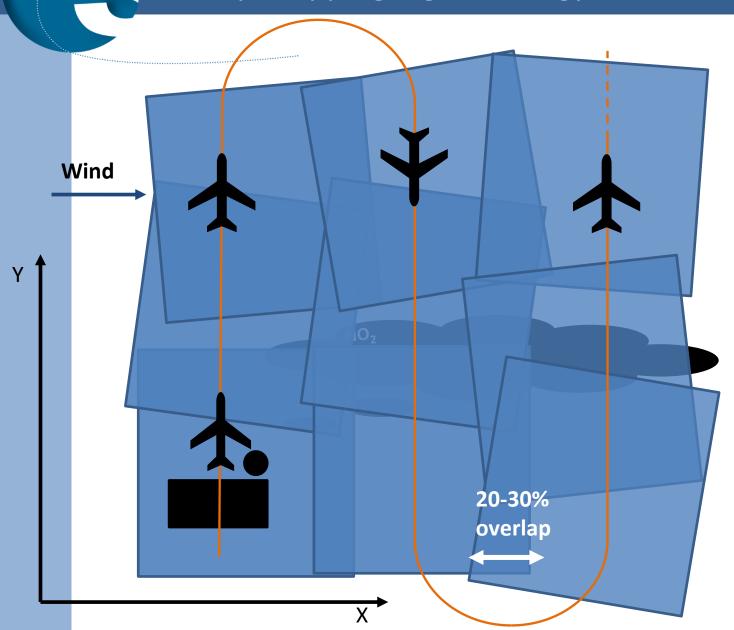

mapping at scale of cities \rightarrow complementary to spaceborne instruments

Introduction

Motivation + key applications

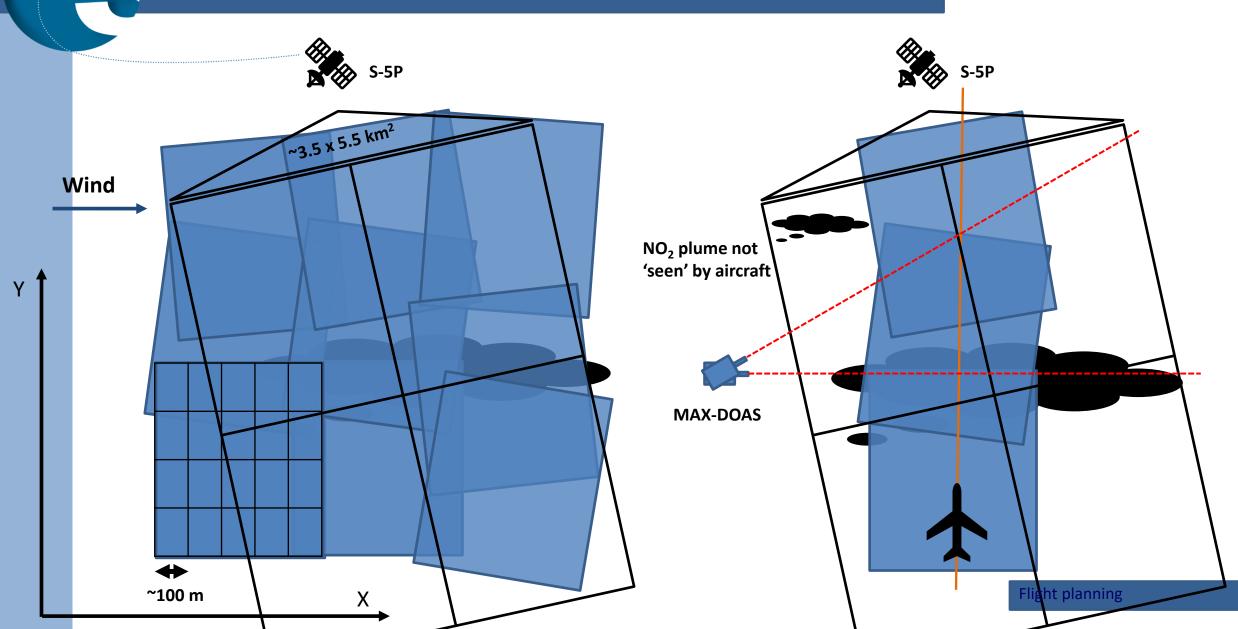
- Air quality monitoring (BUMBA and AROMAPEX project)
 - Mapping of the spatial distribution of pollutants (e.g. NO₂, SO₂, HCHO) at high resolution (~100 m) over cities/industrialised areas
 - Top-down HR source identification and emission rate estimation
 - Gapfiller between spaceborne and ground-based observations
- Trend monitoring
- Enforcement of (inter)national agreements and policymaking, e.g. Paris Agreement (COP26, 2016), Green Deal, LEZ and ECA, etc.
- Chemistry transport model input or validation (BUMBA project)
- Satellite validation + study of satellite intra-pixel variability (SVANTE/QA4EO project)
- Support to future satellite mission design (NITROCAM project)
 - •••

Flight planning for hyperspectral imaging



Ζ

- Flight planning requires much discussion and many trade-offs need to be taken into account:
 - **Scientific properties**: emission source location, air quality (quantify emission, identify source), satellite validation, etc.
 - **Instrument properties**: FOV, spectral and spatial resolution, SNR, detection limit, heat and/or pressure stabilization, etc.
 - Aircraft properties: speed, autonomy, max. altitude (pressurised?), amount of windows availabe, etc.
 - Flight approvals and ATC: restrictions in civil airspace due to airports, restrictions in military areas, last minute restrictions, etc.
 - **Geo-physical properties**: high sun (SZA), PBL height, clear-sky conditions, wind direction, temperature (related to thermal contrast), etc.


Each 'choice' is a compromise!

Survey/mapping flight strategy

- Subsequent overlapping (20-30%) flightlines required for gapless mapping → compensating for roll, pitch and yaw
- Typically mapping time is **1.5-2 hours**, or 2.5-4 hours including ascend/descend
- Typically area of 200-400 km² can be mapped (depends strongly on aircraft speed and FOV)
- Corresponding with **10-20 TROPOMI pixels**
- For satellite validation: mapping in close coincidence with overpass to reduce changes in NO₂ field (+/- 1 hour of overpass time)

Mapping vs transect flight for satellite validation

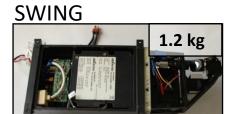
8

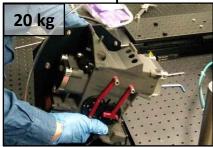
Centralised vs decentralised campaigns


	Centralised campaigns	Decentralised/recurrent campaigns
Strengths	 Large number of teams and instruments In-depth Cal/Val analysis Intercomparison of instruments Remote locations accessible Exchange of knowledge 	 Flexible Cost-effective Optimal distribution: latitude, species, pollution levels and sources, low vs high albedo, etc. Recurrent (e.g. covering different seasons)
Weaknesses	 Requires much planning – more complex Expensive One shot/ Event-based (usually summer) Requires strong local support 	 Lack of routine (sensitive to errors) No full instrument set up to intercompare Reduced discussion between teams Close to 'home base' of team or infrastructure
Examples	•AROMAT •AROMAPEX •NITROX •CINDI	•QA4EO •SVANTE •RAMOS •NITROCAM

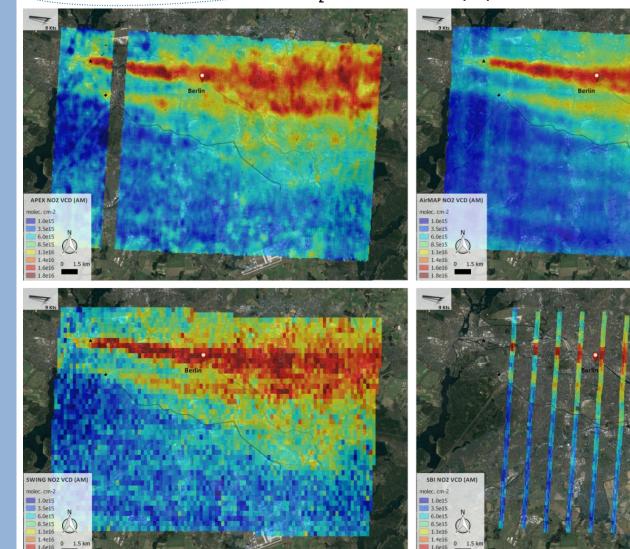
UV-VIS hyperspectral imagers

Non-exhaustive list of deployed UV-VIS hyperspectral imagers


Instrument	Target (Tropo NO ₂ , HCHO, SO ₂)	Reference
AirMAP	-Power plant (DE)	Schönhardt et al., 2015
	-City of Bucharest + power plant (RO)	Meier et al., 2017
APEX	-Zurich (city, airport, local harbour) (CH)	Popp et al, 2012
	-City of Brussels, Antwerp and Liège (BE)	Tack et al., 2017
	-TROPOMI validation (BE)	Tack et al., 2021
GCAS	-Houston city + harbour (refineries) (USA)	Nowlan et al., 2016
GeoTASO		Nowlan et al., 2018
	-New York City and Long Island Sound	Judd et al., 2020
	(TROPOMI validation) (USA)	
HAIDI	-Etna (IT)	General et al., 2014
	-Metropolitan area of Indianapolis (USA)	
iDOAS	-Highveld Power plants (ZA)	Heue et al., 2008
SPECTROLITE (SBI)	-City of Berlin + power plant (DE)	Vlemmix et al., 2017
		Tack et al., 2019
SWING	 -City of Bucharest + power plant (RO) 	Merlaud et al., 2018
		Merlaud et al., 2020



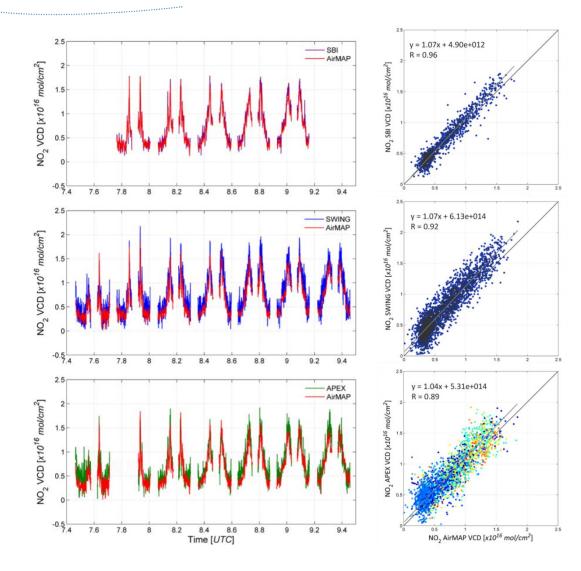
APEX


SpectroLite

Imaging systems

UV-VIS hyperspectral imagers

NO₂ VCD over Berlin – 21/04/2016

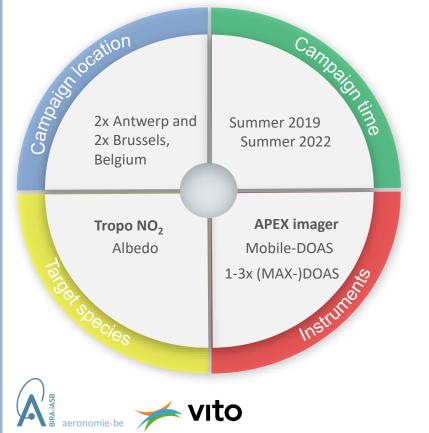

2016 AROMAPEX campaign over Berlin, Germany – mapping of NO_2 (Tack et al. 2019)

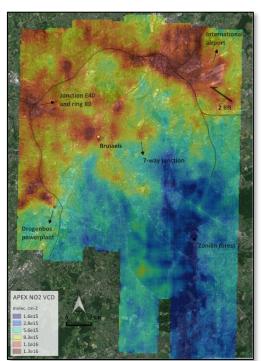
Reuter West CHP powerplant 1870 t.yr⁻¹ NOx (EEA, 2017)

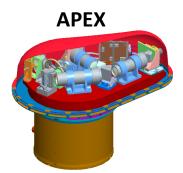
UV-VIS hyperspectral imagers

2016 AROMAPEX campaign over Berlin, Germany – mapping of NO₂ (Tack et al. 2019)

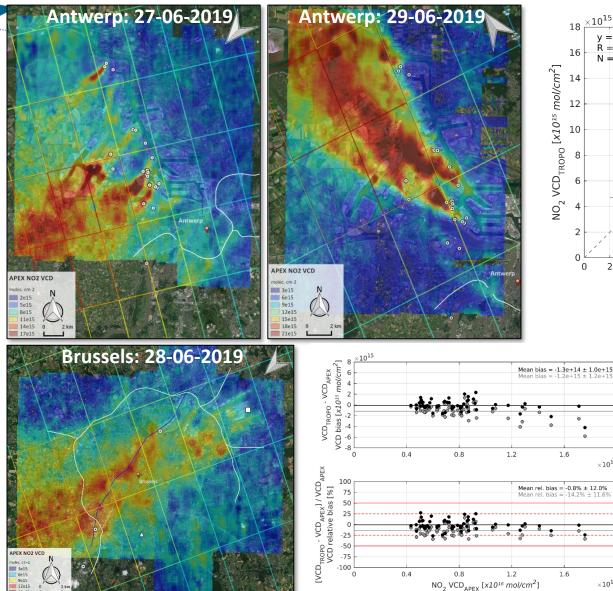
Reuter West CHP powerplant 1870 t.yr¹ NOx (EEA, 2017)


Imaging systems


ESA SVANTE and QA4EO campaigns – S5P validation



- Airborne mapping of tropospheric NO₂ with APEX imager (VIS 80 m x 60 m)
- Antwerp one of largest petrochemical clusters in Europe + urban emissions
- 4th APEX flight campaign over these sites (BUMBA project) and 2nd for S-5p validation



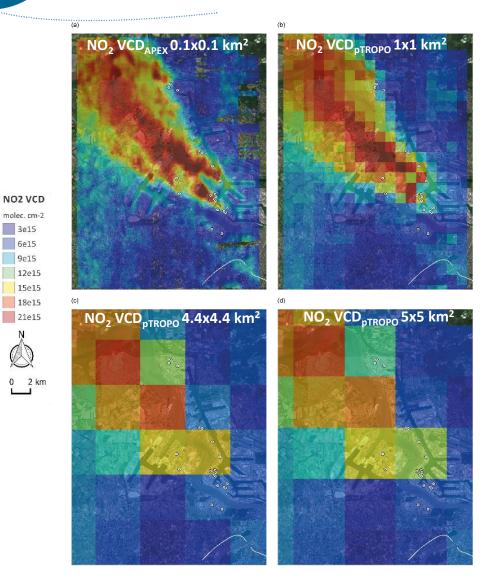

BASF BASF Eventk Boreals Eventk Boreals Eventk Taal ExontMobil Exont Ex

BUMBA campaign (2015)

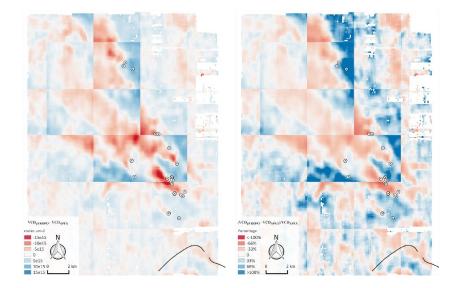
S5PVAL-BE - APEX NO₂ VCD retrievals

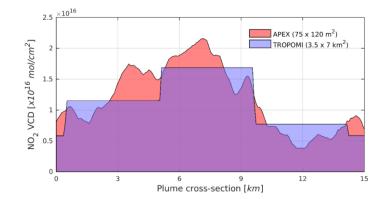
Scatterplots and linear regression analyses of colocated TROPOMI and averaged APEX NO₂ VCD retrievals for the data sets acquired on 26-29 June 2019 + NO₂ VCD bias (VCD_{TROPO(-CRE)} - VCD_{APEX})

Full analysis available in AMT (Tack et al., 2021)


1.6

1.6


×10¹⁶


 $\times 10^{16}$

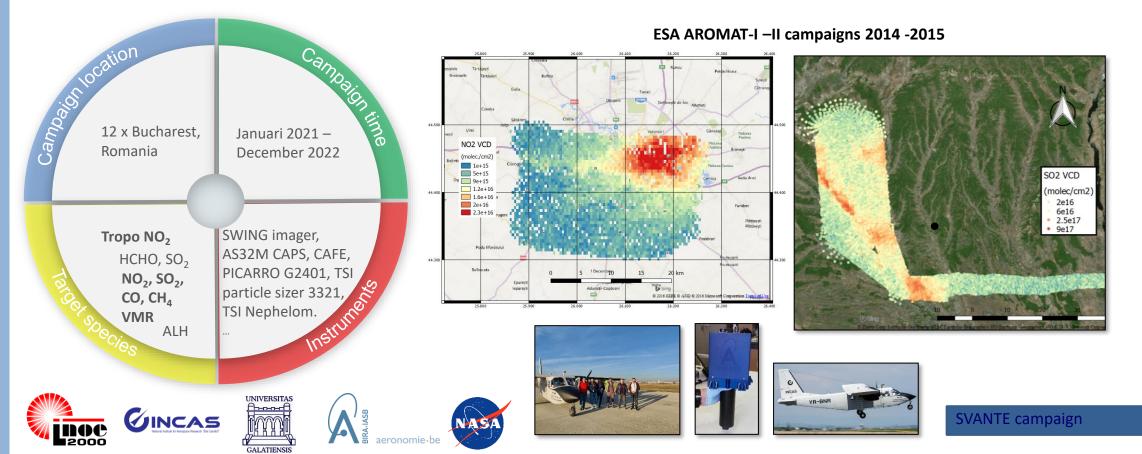
S5PVAL-BE – intrapixel variability and signal smearing

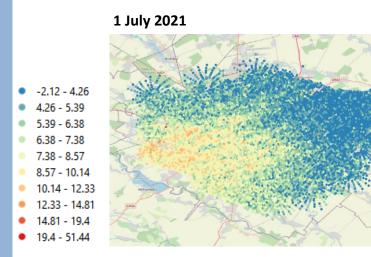
Satellite interpixel variability and signal smoothing can be studied based on high resolution airborne data \rightarrow in the order of 1-2 x 10¹⁵ molec cm⁻² on average, or **10% - 20%**, depending on the amount of heterogeneity in the NO₂ field and assuming a TROPOMI pixel size of 3.5 x 7 km²

SVANTE campaign

S5PVAL-DE-BERLIN

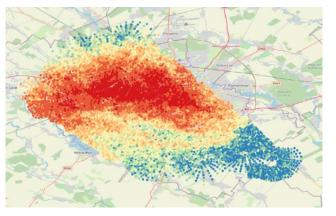
- Recurrent airborne mapping of tropo NO₂ over Berlin with SWING imager (UV-VIS 160 x 160 m)
- 12 flights during one year over Berlin covering different conditions: pollution levels, meteorology,
 S-5p overpass angular dependence, etc.
- SWING+ from **FUB Cessna 207T** and SWINGPOD from **motorglider ASK16** (integrated April 2022)



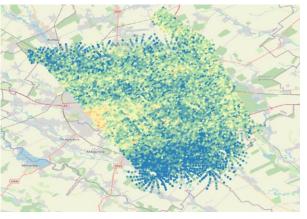


18

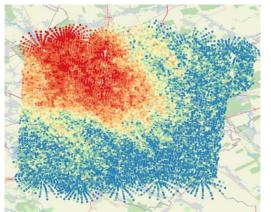
- Recurrent airborne mapping of tropo NO₂, SO₂, HCHO, with SWING imager, and sounding of NO₂, HCHO, CO, CH₄, aerosols over Bucharest (again major pollution hotspot) during 2 years
- Linked to ESA RAMOS project: development of Romanian atmospheric observation system

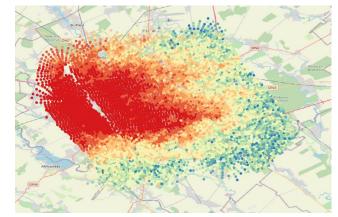


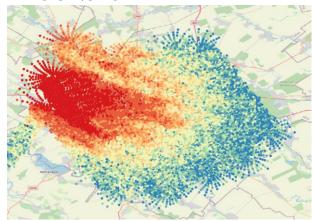
Preliminary quicklooks with fixed AMF



S5PVAL-RO


4 November 2021


10 July 2021


5 November 2021

29 October 2021

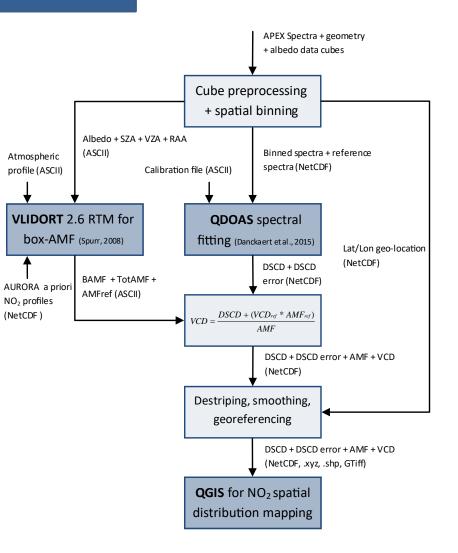
11 November 2021

©Alexis Merlaud - BIRA

Airborne data format

- NetCDF format (python script available to convert from own format and fill attributes)
- Following largely Climate and Forecast (CF) metadata conventions and TROPOMI L2 product definitions
- Global attributes
 - Campaign description: ROI, date, aircraft, instrument, operator, etc.
 - Algorithm parameters DOAS fit
 - Algorithm parameters RTM
 - ERA-5 wind, PBL, Surface temperature (average and st. dev.)
 - ightarrow Fully traceable for user how data was processed
 - ightarrow Allows for different versions to exist next to each other

Data


- VCD + intermediate products such as AMF, (D)SCD
- RTM input: albedo, RAA, VZA, SZA, etc.
- Uncertainties on VCD, DSCD, SCDref and AMF
- Lat, Lon, time for each pixel
- → Similar to TROPOMI L2 data product
- Can be used for all projects involving data from airborne imagers

SVANTE_SWING2_FUBCESSNA_20210614.nc - 📹 METADATA ~ GALGORITHM SETTINGS Ca DOASFIT 🕒 RTM CAMPAIGN DESCRIPTION air_mass_factor_troposphere air_mass_factor_troposphere_uncertainty 🕅 id 🕅 latitude 職 longitude mitrogendioxide_differential_slant_column_density mitrogendioxide_residual_slant_column_density_uncertainty mitrogendioxide_slant_column_density mitrogendioxide_slant_column_density_uncertainty mitrogendioxide_tropospheric_column mitrogendioxide_tropospheric_column_uncertainty 🍓 ga ivalue root_mean_square_error_of_fit solar_azimuth_angle solar_zenith_angle surface_albedo_nitrogendioxide_window 🍓 time UTC 🍓 viewing_azimuth_angle wiewing_zenith_angle

Central processing

Central airborne data processor v1.1

- Key objectives
 - Collect data from different campaigns and different instruments
 - Avoid use of different a priori (albedo, NO₂ profile, aerosol scenario, SCD_{ref}) in processing of data from different campaigns/instruments
 - Process in a harmonized way in order to obtain independent reference data sets to compare with TROPOMI L2 products
- 1) Pre-processing and DOAS analysis (QDOAS)
- 2) DSCD to VCD processing based on AMF computation (Lidort 2.6 RTM)
 - Using same a priori (temperature correction, stratospheric correction, reference SCD, RTM parameters (vertical profile, albedo,...), etc.)
- 3) Intercomparison coinciding airborne-satellite data
 - Using same gridding tools and spatial/temporal comparison with satellite data

ESA NITROCAM campaign in support of NITROSAT

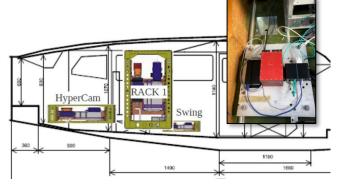
NITROSAT 💑

• NITROSAT is an **EE11 candidate** (potential launch 2032?)

DE BRUXELLES Freie Universität

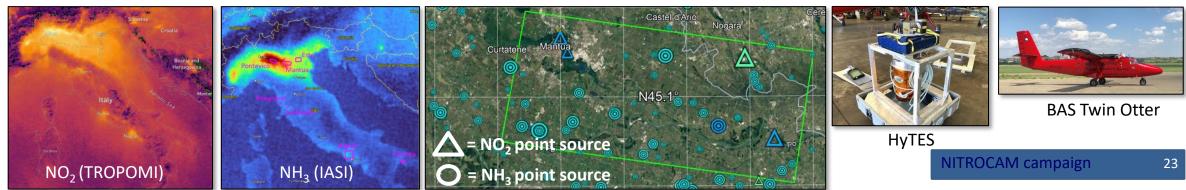
- Satellite mission proposed to simultaneously observe NO₂ (VIS) and NH₃ (TIR) → Key reactive species of the global nitrogen cycle
- Globally at a spatial resolution of at least 500 m (current satellite missions, e.g. IASI, 12 km and S5P, 3.5x5.5 km²)
- Main motivation:
 - NO₂ and NH₃ have a strong impact on human health, environment and climate
 - While NO₂ emissions are decreasing, NH₃ emissions are rising in Europe and developing countries

NITROCAM X


- **ESA Airborne campaign** in support of the NITROSAT EE11 candidate (phase 0)
- BIRA (NO₂ retrievals, coordination), ULB (NH₃ retrievals), FUB (flight planning and instrument operations)
- Main objectives:
 - Simultaneous retrieval of NO₂ and NH₃ from various sources based on airborne demonstrator: agricultural, industrial, domestic, transportation
 - downsampling airborne to satellite resolution, study sensitivity + detection limit, emission rate retrieval, etc.

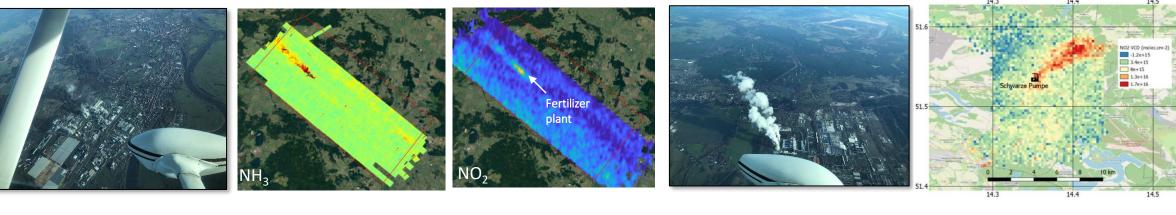
ESA NITROCAM campaign in support of NITROSAT

• Airborne demonstrator: SWING (BIRA) and TELOPS Hyper-CAM LW (GFZ) in Cessna 207T (FUB)

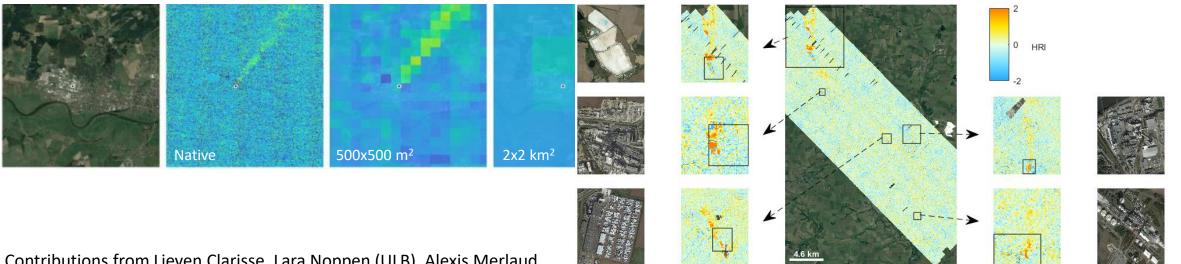


Airborne campaigns

	SWING+	TELOPS Hyper-Cam LW
Wavelength range	280-550 nm	848-1288 cm ⁻¹
Spectral resolution (FWHM)	0.7 nm	1.45 cm ⁻¹
FOV across-track	100°	25.7° max
IFOV across track	3°	0.08°
Swath width	2900 m	1350 m
Ground speed	60 m/s	51 m/s
Exposure time	0.5 s	2.29 s
Spatial resolution	170 m	5 m
Weight	3 kg	140 kg
Size (LxWxH)	20 x 20 x 30 cm ³	100 x 60 x 50 cm ³
Scanning	Whiskbroom	Imaging Fourier interferometer
Target platform	UAV/aircraft	Aircraft


- Focusing on variety of sources (agricultural, industrial, domestic, transportation)
- NITROCAM-DE: 2021 rural and urban/industrial sites close to Berlin (+ Bremen area in 2023?)
- NITROCAM-IT: May-July 2022 Po Valley, Tuscany in collaboration with KCL, BAS, and NASA/JPL (HyTES)

NITROCAM-DE

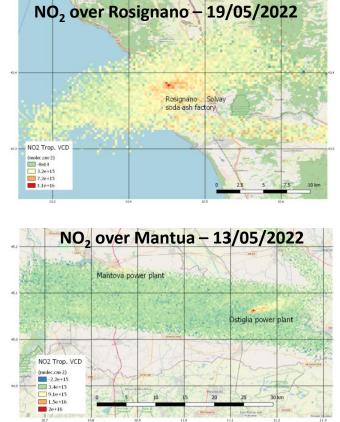

 $_{1}$ NH₃ and NO₂ over Piesteritz – 28/04/2021 – first simultaneous retrieval

 NO_2 over Schwarze Pumpe – 14/11/2020

NH₃ over Piesteritz – 08/10/2020 – downsampling to pseudo-satellite resolution

NH₃ over Stassfurt/Bernburg – 09/05/2021 – signal from many sources

Contributions from Lieven Clarisse, Lara Noppen (ULB), Alexis Merlaud (BIRA), Thomas Ruhtz (FUB)


NITROCAM-IT

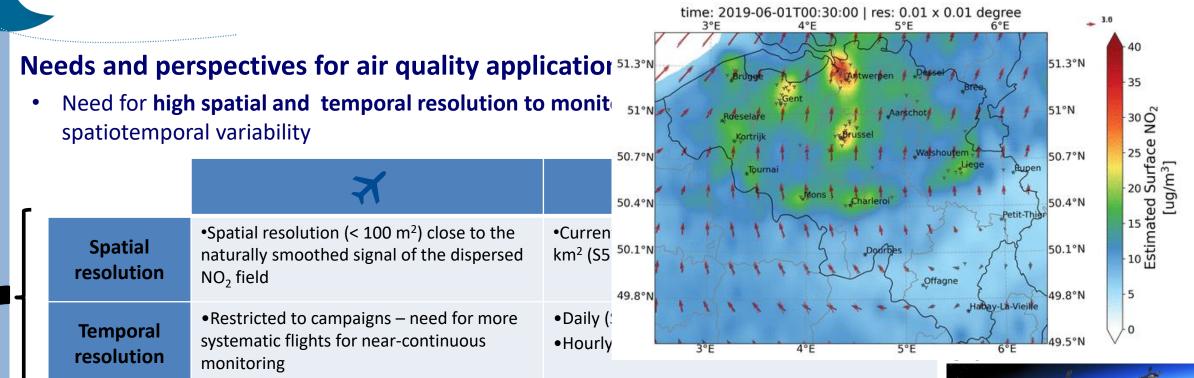
Preliminary quicklooks

NH₃ over Rosignano – 19/05/2022 0 1 0 E - 1 - 2

NH₃ over Mantua – 13/05/2022 (NH₃ data not georeferenced yet!)

Contributions from Lieven Clarisse, Lara Noppen (ULB), Alexis Merlaud (BIRA), Thomas Ruhtz (FUB)

Conclusion and perspectives


- Several studies demonstrate that clear NO₂ (and NH₃) signals can be retrieved and individual NO₂ plumes can be identified and linked to their sources over urban/industrialised areas based on airborne imaging data
 - High spatial resolution (~100 m²)
 - High spatial coverage (~350 km² within 90 minutes)
 - NO₂ VCD error approximately 20%
- High potential for
 - Local air quality studies → gap filler between satellites and ground-based networks
 - Input for emission inventories and CTMs
 - Trend monitoring and policymaking
 - Validation of satellite measurements and AQ models
 - Airborne precursor support to future satellite mission design

But... Need for more best practice documents, joint standards, harmonization, protocols for data acquisition and processing

through EUFAR at European level?

Conclusion and perspectives

©PhD study Wenfu Sun - BIRA

- Current airborne imaging systems as precursors for future (low-cost) stratospheric and spaceborne missions, complementing flagship missions like S5P, S5, S4, Nitrosat, etc e.g. deploy on HAPS/drones (20-30 km altitude) hovering over certain ROI or geostationary e.g. deploy on large constellation of orbiting compact, low-cost CubeSats (400 km)
- Need to convert retrieved atmospheric columns (VCD) to surface concentrations (VMR)

...Thank you!

uv-vis.aeronomie.be/airborne S5pcampaigns.aeronomie.be

Contact: frederik.tack@aeronomie.be